River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models

被引:44
|
作者
Seo, Youngmin [1 ]
Kim, Sungwon [2 ]
Kisi, Ozgur [3 ]
Singh, Vijay P. [4 ,5 ]
Parasuraman, Kamban [6 ]
机构
[1] Kyungpook Natl Univ, Dept Construct Environm Engn, Sangju 37224, South Korea
[2] Dongyang Univ, Dept Railrd & Civil Engn, Yongju 36040, South Korea
[3] Canik Basari Univ, Fac Engn & Architecture, Dept Civil Engn, Samsun, Turkey
[4] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[5] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
[6] AIR Worldwide, San Francisco, CA 94111 USA
关键词
River stage forecasting; Wavelet packet decomposition; Wavelet packet-ANN; Wavelet packet-ANFIS; Wavelet packet-SVM; NEURAL-NETWORKS; TIME-SERIES; EVAPORATION; PREDICTION; ALGORITHM; REGRESSION; TRANSFORM;
D O I
10.1007/s11269-016-1409-4
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study develops and applies three hybrid models, including wavelet packet-artificial neural network (WPANN), wavelet packet-adaptive neuro-fuzzy inference system (WPANFIS) and wavelet packet-support vector machine (WPSVM), combining wavelet packet decomposition (WPD) and machine learning models, ANN, ANFIS and SVM models, for forecasting daily river stage and evaluates their performance. The WPANN, WPANFIS and WPSVM models using inputs decomposed by the WPD are found to produce higher efficiency based on statistical performance criteria than the ANN, ANFIS and SVM models using original inputs. Performance evaluation for various mother wavelets indicates that the model performance is dependent on mother wavelets and the WPD using Symmlet-10 and Coiflet-18 is more effective to enhance the efficiency of the conventional machine learning models than other mother wavelets. It is found that the WPANFIS model outperforms the WPANN and WPSVM models, and the WPANFIS14-coif18 model produces the best performance among all other models in terms of model efficiency. Therefore, the WPD can significantly enhance the accuracy of the conventional machine learning models, and the conjunction of the WPD and machine learning models can be an effective tool for forecasting daily river stage accurately.
引用
收藏
页码:4011 / 4035
页数:25
相关论文
共 50 条
  • [41] COVID-19 Future Forecasting Using Supervised Machine Learning Models
    Rustam, Furqan
    Reshi, Aijaz Ahmad
    Mehmood, Arif
    Ullah, Saleem
    On, Byung-Won
    Aslam, Waqar
    Choi, Gyu Sang
    IEEE ACCESS, 2020, 8 (08): : 101489 - 101499
  • [42] Rainfall Forecasting with Hybrid and Machine Learning Models Based on Hyperparameter Optimization
    Ersoy, Mevlut
    Keskin, M. Erol
    Guerfidan, Remzi
    JOURNAL OF HYDROLOGIC ENGINEERING, 2023, 28 (11)
  • [43] Forecasting foreign exchange markets: further evidence using machine learning models
    Paravee Maneejuk
    Wilawan Srichaikul
    Soft Computing, 2021, 25 : 7887 - 7898
  • [44] Forecasting of water level in multiple temperate lakes using machine learning models
    Zhu, Senlin
    Hrnjica, Bahrudin
    Ptak, Mariusz
    Choinski, Adam
    Sivakumar, Bellie
    JOURNAL OF HYDROLOGY, 2020, 585
  • [45] Forecasting foreign exchange markets: further evidence using machine learning models
    Maneejuk, Paravee
    Srichaikul, Wilawan
    SOFT COMPUTING, 2021, 25 (12) : 7887 - 7898
  • [46] Empirical Mode Decomposition Based Ensemble Hybrid Machine Learning Models for Agricultural Commodity Price Forecasting
    Das, Pankaj
    Jha, Girish Kumar
    Lama, Achal
    STATISTICS AND APPLICATIONS, 2023, 21 (01): : 99 - 112
  • [47] Multi-step ahead wind speed forecasting using a hybrid model based on two-stage decomposition technique and AdaBoost-extreme learning machine
    Peng, Tian
    Zhou, Jianzhong
    Zhang, Chu
    Zheng, Yang
    ENERGY CONVERSION AND MANAGEMENT, 2017, 153 : 589 - 602
  • [48] Forecasting of volumetric flow rate of Ergene river using machine learning
    Ilhan, Akin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [49] EEG signals classification based on wavelet packet and ensemble Extreme Learning Machine
    Han, Min
    Sun, Zhuoran
    Wang, Jun
    2015 SECOND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI), 2015, : 80 - 85
  • [50] Monthly discharge forecasting using wavelet neural networks with extreme learning machine
    Li BaoJian
    Cheng ChunTian
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (12) : 2441 - 2452