ON MAXIMAL S-FREE CONVEX SETS

被引:14
|
作者
Moran R, Diego A. [1 ]
Dey, Santanu S. [1 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
integer nonlinear programming; cutting planes; maximal lattice-free convex sets; CUTTING PLANES; MINIMAL-INEQUALITIES; SIMPLEX TABLEAU; INTEGER; PROGRAMS; LATTICE; ROWS;
D O I
10.1137/100796947
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S subset of Z(n) satisfy the property that conv(S) boolean AND Z(n) - S. Then a convex set K is called an S-free convex set if int(K) boolean AND S = empty set A maximal S-free convex set is an S-free convex set that is not properly contained in any S-free convex set. We show that maximal S-free convex sets are polyhedra. This result generalizes a result of Basu et al. [SIAM J. Discrete Math., 24 (2010), pp. 158-168] for the case where S is the set of integer points in a rational polyhedron and a result of Lovasz [Mathematical Programming: Recent Developments and Applications, M. Iri and K. Tanabe, eds., Kluwer, Dordrecht, 1989, pp. 177-210] and Basu et al. [Math. Oper. Res., 35 (2010), pp. 704-720] for the case where S is the set of integer points in some affine subspace of R-n.
引用
收藏
页码:379 / 393
页数:15
相关论文
共 50 条
  • [1] ON MAXIMAL S-FREE SETS AND THE HELLY NUMBER FOR THE FAMILY OF S-CONVEX SETS
    Averkov, Gennadiy
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (03) : 1610 - 1624
  • [2] Maximal Lattice-Free Convex Sets in Linear Subspaces
    Basu, Amitabh
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (03) : 704 - 720
  • [3] A characterization of maximal homogeneous-quadratic-free sets
    Munoz, Gonzalo
    Paat, Joseph
    Serrano, Felipe
    MATHEMATICAL PROGRAMMING, 2025, 210 (1-2) : 641 - 668
  • [4] A Generalisation of Maximal (k,b)-Linear-Free Sets of Integers
    Minh, Nguyen Quang
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 120 : 315 - 321
  • [5] Generalized Differentiation of Probability Functions: Parameter Dependent Sets Given by Intersections of Convex Sets and Complements of Convex Sets
    van Ackooij, Wim
    Perez-Aros, Pedro
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (01)
  • [6] D-MAXIMAL SETS
    Cholak, Peter A.
    Gerdes, Peter
    Lange, Karen
    JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (04) : 1182 - 1210
  • [7] Some properties of maximal sets
    Omanadze, Roland Sh.
    Chitaia, Irakli O.
    LOGIC JOURNAL OF THE IGPL, 2015, 23 (04) : 628 - 639
  • [8] Maximal Lattice-Free Polyhedra: Finiteness and an Explicit Description in Dimension Three
    Averkov, Gennadiy
    Wagner, Christian
    Weismantel, Robert
    MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (04) : 721 - 742
  • [9] Lifts of Convex Sets and Cone Factorizations
    Gouveia, Joao
    Parrilo, Pablo A.
    Thomas, Rekha R.
    MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (02) : 248 - 264
  • [10] Convex Sets and Minimal Sublinear Functions
    Basu, Amitabh
    Cornuejols, Gerard
    Zambelli, Giacomo
    JOURNAL OF CONVEX ANALYSIS, 2011, 18 (02) : 427 - 432