Liouville theorems for stable at infinity solutions of Lane-Emden system

被引:11
作者
Mtiri, Foued [1 ]
Ye, Dong [2 ]
机构
[1] Univ Tunis El Manar, ANLIG, UR13ES32, El Manar II 2092, Tunisia
[2] Univ Lorraine, UMR 7502, IECL, 3 Rue Augustin Fresnel, F-57073 Metz, France
关键词
Lane-Emden system; stable solutions; stability outside a compact set; m-bihannonic equation; EQUATION; CLASSIFICATION;
D O I
10.1088/1361-6544/aaf078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Lane-Emden system -Delta u = v(p), = Delta v = u(theta) in R-N, and we prove the nonexistence of smooth positive solutions which are stable outside a compact set, for any p, theta > 0 under the Sobolev hyperbola.
引用
收藏
页码:910 / 926
页数:17
相关论文
共 23 条
[1]  
[Anonymous], 1996, DIFFER INTEGRAL EQU
[2]   Symmetry and symmetry breaking for ground state solutions of some strongly coupled elliptic systems [J].
Bonheure, Denis ;
dos Santos, Ederson Moreira ;
Ramos, Miguel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :62-96
[3]  
Busca J, 2002, INDIANA U MATH J, V51, P37
[4]   A NEW CRITICAL CURVE FOR THE LANE-EMDEN SYSTEM [J].
Chen, Wenjing ;
Dupaigne, Louis ;
Ghergu, Marius .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) :2469-2479
[5]   Liouville theorems for stable Lane-Emden systems and biharmonic problems [J].
Cowan, Craig .
NONLINEARITY, 2013, 26 (08) :2357-2371
[6]   A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem [J].
Davila, Juan ;
Dupaigne, Louis ;
Wang, Kelei ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2014, 258 :240-285
[7]  
De Figueiredo D.G., 1994, Ann. Sc. Norm. Sup. Pisa, V21, P387
[8]   Multiplicity of solutions for a fourth-order quasilinear nonhomogeneous equation [J].
dos Santos, E. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :277-297
[9]   On the classification of solutions of the Lane-Emden equation on unbounded domains of RN [J].
Farina, Alberto .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (05) :537-561
[10]   ON THE STABILITY AND INSTABILITY OF POSITIVE STEADY-STATES OF A SEMILINEAR HEAT-EQUATION IN RN [J].
GUI, CF ;
NI, WM ;
WANG, XF .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1153-1181