Tensor diagrams and cluster algebras

被引:24
作者
Fomin, Sergey [1 ]
Pylyayskyy, Pavlo [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55414 USA
基金
美国国家科学基金会;
关键词
Cluster algebra; Invariant theory; Web basis; Tensor diagram; SEMICANONICAL BASES; QUIVER VARIETIES; POSITIVITY; FINITE;
D O I
10.1016/j.aim.2016.03.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The rings of SL(V) invariants of configurations of vectors and linear forms in a finite-dimensional complex vector space V were explicitly described by Hermann Weyl in the 1930s. We show that when. V is 3-dimensional, each of these rings carries a natural cluster algebra structure (typically, many of them) whose cluster variables include Weyl's generators. We describe and explore these cluster structures using the combinatorial machinery of tensor diagrams. A key role is played by the web bases introduced by G. Kuperberg. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:717 / 787
页数:71
相关论文
共 55 条
[1]   Brill-Gordan loci, transvectants and an analogue of the Foulkes conjecture [J].
Abdesselam, A. ;
Chipalkatti, J. .
ADVANCES IN MATHEMATICS, 2007, 208 (02) :491-520
[2]  
[Anonymous], 1990, DIAGRAM TECHNIQUES G
[3]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52
[4]  
Blinn J.F., USING TENSOR DIAGRAM
[5]   On the quiver Grassmannian in the acyclic case [J].
Caldero, Philippe ;
Reineke, Markus .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) :2369-2380
[6]  
Cohn P.M., 2003, Further Algebra and Applications
[7]  
Cvitanovic P., 2008, Group Theory
[8]  
Danilov V., 1994, Encyclopaedia of Mathematical Sciences, V23, P167
[9]   QUIVERS WITH POTENTIALS AND THEIR REPRESENTATIONS II: APPLICATIONS TO CLUSTER ALGEBRAS [J].
Derksen, Harm ;
Weyman, Jerzy ;
Zelevinsky, Andrei .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :749-790
[10]  
Dolgachev I., 2003, LECTURES ON INVARIAN