Unsupervised Machine Learning for the Identification of Preflare Spectroscopic Signatures

被引:12
|
作者
Woods, Magnus M. [1 ,2 ]
Sainz Dalda, Alberto [1 ,2 ,3 ]
De Pontieu, Bart [2 ,4 ,5 ]
机构
[1] Bay Area Environm Res Inst BAERI, POB 25, Moffett Field, CA 94035 USA
[2] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[3] Stanford Univ, Stanford, CA 94305 USA
[4] Univ Oslo, Inst Theoret Astrophys, POB 1029 Blindern, NO-0315 Oslo, Norway
[5] Univ Oslo, Rosseland Ctr Solar Phys, POB 1029 Blindern, NO-0315 Oslo, Norway
来源
ASTROPHYSICAL JOURNAL | 2021年 / 922卷 / 02期
关键词
SOLAR; FILAMENT; REGION; FLARES; LINES;
D O I
10.3847/1538-4357/ac2667
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of the preflare environment is of great importance to understanding what drives solar flares. k-means clustering, an unsupervised machine-learning technique, has the ability to cluster large data set in a way that would be impractical or impossible for a human to do. In this paper we present a study using k-means clustering to identify possible preflare signatures in spectroscopic observations of the Mg ii h and k spectral lines made by NASA's Interface Region Imaging Spectrometer. Our analysis finds that spectral profiles showing single-peak Mg ii h and k and single-peaked emission in the Mg ii UV triplet lines are associated with preflare activity up to 40 minutes prior to flaring. Subsequent inversions of these spectral profiles reveal increased temperature and electron density in the chromosphere, which suggest that significant heating events in the chromosphere may be associated with precursor signals to flares.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Accelerated dinuclear palladium catalyst identification through unsupervised machine learning
    Hueffel, Julian A.
    Sperger, Theresa
    Funes-Ardoiz, Ignacio
    Ward, Jas S.
    Rissanen, Kari
    Schoenebeck, Franziska
    SCIENCE, 2021, 374 (6571) : 1134 - +
  • [22] Reagent identification using terahertz spectroscopic imaging with machine learning
    Murate, Kosuke
    Torii, Yuki
    Kawase, Kodo
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [23] Identification of AKI signatures and classification patterns in ccRCC based on machine learning
    Wang, Li
    Peng, Fei
    Li, Zhen Hua
    Deng, Yu Fei
    Ruan, Meng Na
    Mao, Zhi Guo
    Li, Lin
    FRONTIERS IN MEDICINE, 2023, 10
  • [24] Identification of Immune Signatures of Novel Adjuvant Formulations Using Machine Learning
    Sidhartha Chaudhury
    Elizabeth H. Duncan
    Tanmaya Atre
    Casey K. Storme
    Kevin Beck
    Stephen A. Kaba
    David E. Lanar
    Elke S. Bergmann-Leitner
    Scientific Reports, 8
  • [25] Identification of Immune Signatures of Novel Adjuvant Formulations Using Machine Learning
    Chaudhury, Sidhartha
    Duncan, Elizabeth H.
    Atre, Tanmaya
    Storme, Casey K.
    Beck, Kevin
    Kaba, Stephen A.
    Lanar, David E.
    Bergmann-Leitner, Elke S.
    SCIENTIFIC REPORTS, 2018, 8
  • [26] Identification of Methylation Signatures and Rules for Sarcoma Subtypes by Machine Learning Methods
    Ren, Jingxin
    Zhou, XianChao
    Guo, Wei
    Feng, KaiYan
    Huang, Tao
    Cai, Yu-Dong
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [27] Unsupervised learning of structure in spectroscopic cubes
    Araya, M.
    Mendoza, M.
    Solar, M.
    Mardones, D.
    Bayo, A.
    ASTRONOMY AND COMPUTING, 2018, 24 : 25 - 35
  • [28] Machine learning-aided protein identification from multidimensional signatures
    Zhang, Yuewen
    Wright, Maya A.
    Saar, Kadi L.
    Challa, Pavankumar
    Morgunov, Alexey S.
    Peter, Quentin A. E.
    Devenish, Sean
    Dobson, Christopher M.
    Knowles, Tuomas P. J.
    LAB ON A CHIP, 2021, 21 (15) : 2922 - 2931
  • [29] Identification of Single Spectral Lines in Large Spectroscopic Surveys Using UMLAUT: an Unsupervised Machine-learning Algorithm Based on Unbiased Topology
    Baronchelli, I
    Scarlata, C. M.
    Rodriguez-Munoz, L.
    Bonato, M.
    Morselli, L.
    Vaccari, M.
    Carraro, R.
    Barrufet, L.
    Henry, A.
    Mehta, V
    Rodighiero, G.
    Baruffolo, A.
    Bagley, M.
    Battisti, A.
    Colbert, J.
    Dai, Y. S.
    De Pascale, M.
    Dickinson, H.
    Malkan, M.
    Mancini, C.
    Rafelski, M.
    Teplitz, H., I
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 257 (02):
  • [30] Identification of Flow Regime of Boiling Flow in a Vertical Annulus with Unsupervised Machine Learning
    Zhu L.
    Zhang L.
    Sun W.
    Ma Z.
    Pan L.
    Hedongli Gongcheng/Nuclear Power Engineering, 2023, 44 (03): : 112 - 120