Unsupervised Machine Learning for the Identification of Preflare Spectroscopic Signatures

被引:12
|
作者
Woods, Magnus M. [1 ,2 ]
Sainz Dalda, Alberto [1 ,2 ,3 ]
De Pontieu, Bart [2 ,4 ,5 ]
机构
[1] Bay Area Environm Res Inst BAERI, POB 25, Moffett Field, CA 94035 USA
[2] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[3] Stanford Univ, Stanford, CA 94305 USA
[4] Univ Oslo, Inst Theoret Astrophys, POB 1029 Blindern, NO-0315 Oslo, Norway
[5] Univ Oslo, Rosseland Ctr Solar Phys, POB 1029 Blindern, NO-0315 Oslo, Norway
来源
ASTROPHYSICAL JOURNAL | 2021年 / 922卷 / 02期
关键词
SOLAR; FILAMENT; REGION; FLARES; LINES;
D O I
10.3847/1538-4357/ac2667
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of the preflare environment is of great importance to understanding what drives solar flares. k-means clustering, an unsupervised machine-learning technique, has the ability to cluster large data set in a way that would be impractical or impossible for a human to do. In this paper we present a study using k-means clustering to identify possible preflare signatures in spectroscopic observations of the Mg ii h and k spectral lines made by NASA's Interface Region Imaging Spectrometer. Our analysis finds that spectral profiles showing single-peak Mg ii h and k and single-peaked emission in the Mg ii UV triplet lines are associated with preflare activity up to 40 minutes prior to flaring. Subsequent inversions of these spectral profiles reveal increased temperature and electron density in the chromosphere, which suggest that significant heating events in the chromosphere may be associated with precursor signals to flares.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] IoT Device Identification Using Unsupervised Machine Learning
    Koball, Carson
    Rimal, Bhaskar P.
    Wang, Yong
    Salmen, Tyler
    Ford, Connor
    INFORMATION, 2023, 14 (06)
  • [2] Keratoconus severity identification using unsupervised machine learning
    Yousefi, Siamak
    Yousefi, Ebrahim
    Takahashi, Hidenori
    Hayashi, Takahiko
    Tampo, Hironobu
    Inoda, Satoru
    Arai, Yusuke
    Asbell, Penny
    PLOS ONE, 2018, 13 (11):
  • [3] Machine Tool Component Health Identification with Unsupervised Learning
    Gittler, Thomas
    Scholze, Stephan
    Rupenyan, Alisa
    Wegener, Konrad
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (03):
  • [4] Efficient Handwritten Signatures Identification using Machine Learning
    Alharbi, Ibraheem M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 141 - 148
  • [5] Spectroscopic Confirmation of Obscured AGN Populations from Unsupervised Machine Learning
    Hviding, Raphael E.
    Hainline, Kevin N.
    Goulding, Andy D.
    Greene, Jenny E.
    ASTRONOMICAL JOURNAL, 2024, 167 (04):
  • [6] Identifying Patterns of Breast Cancer Genetic Signatures using Unsupervised Machine Learning
    Hamoudi, Rifat
    Bettayeb, Meriem
    Alsaafin, Areej
    Hachim, Mahmood
    Nassir, Qassim
    Nassif, Ali Bou
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [7] An unsupervised machine learning method for discovering patient clusters based on genetic signatures
    Lopez, Christian
    Tucker, Scott
    Salameh, Tarik
    Tucker, Conrad
    JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 85 : 30 - 39
  • [8] Melt Instability Identification Using Unsupervised Machine Learning Algorithms
    Gansen, Alex
    Hennicker, Julian
    Sill, Clemens
    Dheur, Jean
    Hale, Jack S. S.
    Baller, Jorg
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (06)
  • [9] Identification of Wireless User Perception Based on Unsupervised Machine Learning
    Zhang, Kaixuan
    Fan, Guanghui
    Zeng, Jun
    Gui, Guan
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT I, 2019, 301 : 507 - 515
  • [10] Accurate virus identification with interpretable Raman signatures by machine learning
    Ye, Jiarong
    Yeh, Yin-Ting
    Xue, Yuan
    Wang, Ziyang
    Zhang, Na
    Liu, He
    Zhang, Kunyan
    Ricker, RyeAnne
    Yu, Zhuohang
    Roder, Allison
    Lopez, Nestor Perea
    Organtini, Lindsey
    Greene, Wallace
    Hafenstein, Susan
    Lu, Huaguang
    Ghedin, Elodie
    Terrones, Mauricio
    Huang, Shengxi
    Huang, Sharon Xiaolei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (23)