Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings

被引:22
作者
De Nicola, Francesco [1 ,2 ,3 ]
Hines, Peter [2 ,3 ]
De Crescenzi, Maurizio [1 ]
Motta, Nunzio [2 ,3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[2] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4001, Australia
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
Single-walled carbon nanotube films; Anti-reflective coatings; Silicon; Moth-eye effect; Graded-index; Biomimetics; Ultra-black; Hierarchical morphology; OPTICAL-PROPERTIES; BROAD-BAND; EFFICIENCY; ABSORPTION; SILICON; BLACK; INDEX; BIOMIMETICS; PERFORMANCE; INTERFACES;
D O I
10.1016/j.carbon.2016.07.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optical anti-reflection is achieved in natural surfaces by exploiting hierarchical surface morphology. Here, we show that single-walled carbon nanotube (SWCNT) coatings deposited on silicon (Si) realize a broad-band, omnidirectional, and nearly polarization-independent suppression of Si optical reflection, with an increase of film absorption. This is attributed to a biomimetic, hierarchical surface morphology, which introduces a graded refractive index-the so-called moth-eye effect. Moreover, the anti-reflective behavior can be tuned by varying the SWCNT film thickness. The SWCNT random networks are realized by a simple, rapid, reproducible, and inexpensive solution-processing technique and deposited on Si by a dry-transfer printing method, at room temperature. The technology may be used to coat arbitrary substrates such as optical instruments, radiometric applications, light and thermal sensors, solar cells, and light emitting diodes; thus improving the device absorption or emission of light, due to the film optical properties. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 50 条
[31]   Biomimetics of photonic nanostructures [J].
Parker, Andrew R. ;
Townley, Helen E. .
NATURE NANOTECHNOLOGY, 2007, 2 (06) :347-353
[32]   Steering the Efficiency of Carbon Nanotube-Silicon Photovoltaic Cells by Acid Vapor Exposure: A Real-Time Spectroscopic Tracking [J].
Pintossi, C. ;
Pagliara, S. ;
Drera, G. ;
De Nicola, F. ;
Castrucci, P. ;
De Crescenzi, M. ;
Crivellari, M. ;
Boscardin, M. ;
Sangaetti, L. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (18) :9436-9444
[33]   Direct Evidence of Chemically Inhomogeneous, Nanostructured, Si-O Buried Interfaces and Their Effect on the Efficiency of Carbon Nanotube/Si Photovoltaic Heterojunctions [J].
Pintossi, Chiara ;
Salvinelli, Gabriele ;
Drera, Giovanni ;
Pagliara, Stefania ;
Sangaletti, Luigi ;
Del Gobbo, Silvano ;
Morbidoni, Maurizio ;
Scarselli, Manuela ;
De Crescenzi, Maurizio ;
Castrucci, Paola .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (36) :18688-18696
[34]   Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells [J].
Rahman, Atikur ;
Ashraf, Ahsan ;
Xin, Huolin ;
Tong, Xiao ;
Sutter, Peter ;
Eisaman, Matthew D. ;
Black, Charles T. .
NATURE COMMUNICATIONS, 2015, 6
[35]  
Sharma R., 2005, APPL PHYS LETT, V87
[36]   GRADIENT-INDEX ANTI-REFLECTION COATINGS [J].
SOUTHWELL, WH .
OPTICS LETTERS, 1983, 8 (11) :584-586
[37]  
Spiller E., 1980, APPL OPTICS, V19
[38]   Dynamic etching of silicon for broadband antireflection applications [J].
Striemer, CC ;
Fauchet, PM .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :2980-2982
[39]   Omnidirectional absorption in nanostructured metal surfaces [J].
Teperik, T. V. ;
Garcia de Abajo, F. J. ;
Borisov, A. G. ;
Abdelsalam, M. ;
Bartlett, P. N. ;
Sugawara, Y. ;
Baumberg, J. J. .
NATURE PHOTONICS, 2008, 2 (05) :299-301
[40]  
Verly P.G., 1992, APPL OPTICS, V31