SPECTRAL TRIPLES AND FINITE SUMMABILITY ON CUNTZ-KRIEGER ALGEBRAS

被引:0
作者
Goffeng, Magnus [1 ]
Mesland, Bram [2 ]
机构
[1] Leibniz Univ Hannover, Insitut Anal, D-30167 Hannover, Germany
[2] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
来源
DOCUMENTA MATHEMATICA | 2015年 / 20卷
基金
英国工程与自然科学研究理事会;
关键词
Noncommutative geometry; KK-theory; dynamical systems; C-ASTERISK-ALGEBRAS; EQUIVARIANT KK-THEORY; FREDHOLM MODULES; CSTAR-ALGEBRAS; SPACES; EQUIVALENCE; PRODUCT; THEOREM; FLOW;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algebras by means of realizing these algebras as "the algebra of functions on a non-commutative space" coming from a sub shift of finite type. We show that any odd Khomology class can be represented by such an odd bounded Fredholm module or odd spectral triple. The odd bounded Fredholm modules that are constructed are finitely summable. The spectral triples are theta-summable, although their phases will already on the level of analytic K-cycles be finitely summable bounded Fredholm modules. Using the unbounded Kasparov product, we exhibit a family of generalized spectral triples, related to work of Bellissard-Pearson, possessing mildly unbounded commutators, whilst still giving well defined K-homology classes.
引用
收藏
页码:89 / 170
页数:82
相关论文
共 73 条
[1]   Purely infinite C*-algebras arising from dynamical systems [J].
AnantharamanDelaroche, C .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1997, 125 (02) :199-225
[2]  
Atiyah M.F., 1969, P INT C FUNCT AN REL, P21
[3]   CHARGE DEFICIENCY, CHARGE-TRANSPORT AND COMPARISON OF DIMENSIONS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) :399-422
[4]  
BAAJ S, 1983, CR ACAD SCI I-MATH, V296, P875
[5]  
Bär C, 2007, J NONCOMMUT GEOM, V1, P385
[6]  
Blackadar B., 2006, ENCYCL MATH SCI, V122
[7]  
Blackadar B., 1991, J OPERAT THEOR, V26, P255
[8]  
Blecher D., OPERATOR ALGEBRAS TH
[9]  
Brain S., J NONCOMMUT IN PRESS
[10]   Unbounded Fredholm modules and spectral flow [J].
Carey, A ;
Phillips, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (04) :673-718