Investigating the relationship between subjective drug craving and temporal dynamics of the default mode network, executive control network, and salience network in methamphetamine dependents using rsfMRI

被引:0
作者
Soltanian-Zadeh, Somayyeh [1 ]
Hossein-Zadeh, Gholam-Ali [1 ,2 ]
Shahbabaie, Alireza [3 ,4 ]
Ekhtiari, Hamed [3 ,4 ]
机构
[1] Univ Tehran, Dept Elect & Comp Engn, Tehran, Iran
[2] Inst Res Fundamental Sci, Sch Cognit Sci, Tehran, Iran
[3] Univ Tehran Med Sci, Res Ctr Mol & Cellular Imaging, Tehran, Iran
[4] Inst Cognit Sci Studies, Translat Neurosci Program, Tehran, Iran
来源
MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING | 2016年 / 9788卷
关键词
Dynamic functional connectivity; resting state fMRI; default mode network; methamphetamine; FUNCTIONAL CONNECTIVITY; SMOKERS; CORTEX; STATES;
D O I
10.1117/12.2217214
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Resting state functional connectivity (rsFC) studies using fMRI provides a great deal of knowledge on the spatiotemporal organization of the brain. The relationships between and within a number of resting state functional networks, namely the default mode network (DMN), salience network (SN) and executive control network (ECN) have been intensely studied in basic and clinical cognitive neuroscience [1]. However, the presumption of spatial and temporal stationarity has mostly restricted the assessment of rsFC [1]. In this study, sliding window correlation analysis and k-means clustering were exploited to examine the temporal dynamics of rsFC of these three networks in 24 abstinent methamphetamine dependents. Afterwards, using canonical correlation analysis (CCA) the possible relationship between the level of self-reported craving and the temporal dynamics was examined. Results indicate that the rsFC transits between 6 discrete "FC states" in the meth dependents. CCA results show that higher levels of craving are associated with higher probability of transiting from state 4 to 6 (positive FC of DMN-ECN getting weak and negative FC of DMN-SN appearing) and staying in state 4 (positive FC of DMN-ECN), lower probability of staying in state 2 (negative FC of DMN-ECN), transiting from state 4 to 2 (change of positive FC of DMN-ECN to negative FC), and transiting from state 3 to 5 (appearance of negative FC of DMN-SN and positive FC of DMN-ECN with the presence of negative FC of SN-ECN). Quantitative measures of temporal dynamics in large-scale brain networks could bring new added values to increase potentials for applications of rsfMRI in addiction medicine.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[2]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[3]   Classification of schizophrenia patients based on resting-state functional network connectivity [J].
Arbabshirani, Mohammad R. ;
Kiehl, Kent A. ;
Pearlson, Godfrey D. ;
Calhoun, Vince D. .
FRONTIERS IN NEUROSCIENCE, 2013, 7
[4]   Time-frequency dynamics of resting-state brain connectivity measured with fMRI [J].
Chang, Catie ;
Glover, Gary H. .
NEUROIMAGE, 2010, 50 (01) :81-98
[5]   Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics [J].
Cole, David M. ;
Beckmann, Christian F. ;
Long, Christopher J. ;
Matthews, Paul M. ;
Durcan, Michael J. ;
Beaver, John D. .
NEUROIMAGE, 2010, 52 (02) :590-599
[6]   Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia [J].
Damaraju, E. ;
Allen, E. A. ;
Belger, A. ;
Ford, J. M. ;
McEwen, S. ;
Mathalon, D. H. ;
Mueller, B. A. ;
Pearlson, G. D. ;
Potkin, S. G. ;
Preda, A. ;
Turner, J. A. ;
Vaidya, J. G. ;
van Erp, T. G. ;
Calhoun, V. D. .
NEUROIMAGE-CLINICAL, 2014, 5 :298-308
[7]   The development and expression of physical nicotine dependence corresponds to structural and functional alterations in the anterior cingulate-precuneus pathway [J].
Huang, Wei ;
King, Jean A. ;
Ursprung, W. W. Sanouri ;
Zheng, Shaokuan ;
Zhang, Nanyin ;
Kennedy, David N. ;
Ziedonis, Douglas ;
DiFranza, Joseph R. .
BRAIN AND BEHAVIOR, 2014, 4 (03) :408-417
[8]   Dynamic functional connectivity: Promise, issues, and interpretations [J].
Hutchison, R. Matthew ;
Womelsdorf, Thilo ;
Allen, Elena A. ;
Bandettini, Peter A. ;
Calhoun, Vince D. ;
Corbetta, Maurizio ;
Della Penna, Stefania ;
Duyn, Jeff H. ;
Glover, Gary H. ;
Gonzalez-Castillo, Javier ;
Handwerker, Daniel A. ;
Keilholz, Sheila ;
Kiviniemi, Vesa ;
Leopold, David A. ;
de Pasquale, Francesco ;
Sporns, Olaf ;
Walter, Martin ;
Chang, Catie .
NEUROIMAGE, 2013, 80 :360-378
[9]   Prefrontal and limbic resting state brain network functional connectivity differs between nicotine-dependent smokers and non-smoking controls [J].
Janes, Amy C. ;
Nickerson, Lisa D. ;
Frederick, Blaise deB. ;
Kaufman, Marc J. .
DRUG AND ALCOHOL DEPENDENCE, 2012, 125 (03) :252-259
[10]   FSL [J].
Jenkinson, Mark ;
Beckmann, Christian F. ;
Behrens, Timothy Ej. ;
Woolrich, Mark W. ;
Smith, Stephen M. .
NEUROIMAGE, 2012, 62 (02) :782-790