DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly

被引:216
|
作者
Litovchick, Larisa [1 ,2 ]
Florens, Laurence A. [3 ]
Swanson, Selene K. [3 ]
Washburn, Michael P. [3 ,4 ]
DeCaprio, James A. [1 ,2 ,5 ]
机构
[1] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02215 USA
[2] Harvard Univ, Brigham & Womens Hosp, Dept Med, Sch Med, Boston, MA 02115 USA
[3] Stowers Inst Biomed Res, Kansas City, MO 64110 USA
[4] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66160 USA
[5] Dana Farber Canc Inst, Belfer Inst Appl Canc Sci, Boston, MA 02215 USA
关键词
retinoblastoma-like protein p130; growth arrest; cell cycle; Down syndrome; phosphorylation; cellular senescence; CELL-CYCLE CONTROL; IN-VIVO; CAENORHABDITIS-ELEGANS; TUMOR-SUPPRESSOR; DOWN-SYNDROME; B-MYB; E2F; DROSOPHILA; PRB; IDENTIFICATION;
D O I
10.1101/gad.2034211
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In the absence of growth signals, cells exit the cell cycle and enter into G0 or quiescence. Alternatively, cells enter senescence in response to inappropriate growth signals such as oncogene expression. The molecular mechanisms required for cell cycle exit into quiescence or senescence are poorly understood. The DREAM (DP, RB [retinoblastoma], E2F, and MuvB) complex represses cell cycle-dependent genes during quiescence. DREAM contains p130, E2F4, DP1, and a stable core complex of five MuvB-like proteins: LIN9, LIN37, LIN52, LIN54, and RBBP4. In mammalian cells, the MuvB core dissociates from p130 upon entry into the cell cycle and binds to BMYB during S phase to activate the transcription of genes expressed late in the cell cycle. We used mass spectroscopic analysis to identify phosphorylation sites that regulate the switch of the MuvB core from BMYB to DREAM. Here we report that DYRK1A can specifically phosphorylate LIN52 on serine residue 28, and that this phosphorylation is required for DREAM assembly. Inhibiting DYRK1A activity or point mutation of LIN52 disrupts DREAM assembly and reduces the ability of cells to enter quiescence or undergo Ras-induced senescence. These data reveal an important role for DYRK1A in the regulation of DREAM activity and entry into quiescence.
引用
收藏
页码:801 / 813
页数:13
相关论文
共 50 条
  • [21] The Molecular Chaperone TRiC/CCT Binds to the Trp-Asp 40 (WD40) Repeat Protein WDR68 and Promotes Its Folding, Protein Kinase DYRK1A Binding, and Nuclear Accumulation
    Miyata, Yoshihiko
    Shibata, Takeshi
    Aoshima, Masato
    Tsubata, Takuichi
    Nishida, Eisuke
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (48) : 33320 - 33332
  • [22] DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells
    Rozen, Esteban J.
    Roewenstrunk, Julia
    Jose Barallobre, Maria
    Di Vona, Chiara
    Jung, Carole
    Figueiredo, Ana F.
    Luna, Jeroni
    Fillat, Cristina
    Arbones, Maria L.
    Graupera, Mariona
    Valverde, Miguel A.
    de la Luna, Susana
    CELL REPORTS, 2018, 23 (06): : 1867 - 1878
  • [23] DYRK1A controls the transition from proliferation to quiescence during lymphoid development by destabilizing Cyclin D3
    Thompson, Benjamin J.
    Bhansali, Rahul
    Diebold, Lauren
    Cook, Daniel E.
    Stolzenburg, Lindsay
    Casagrande, Anne-Sophie
    Besson, Thierry
    Leblond, Bertrand
    Desire, Laurent
    Malinge, Sebastien
    Crispino, John D.
    JOURNAL OF EXPERIMENTAL MEDICINE, 2015, 212 (06) : 723 - 740
  • [24] Intracellular Distribution of Differentially Phosphorylated Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A)
    Kaczmarski, Wojciech
    Barua, Madhabi
    Mazur-Kolecka, Bozena
    Frackowiak, Janusz
    Dowjat, Wieslaw
    Mehta, Pankaj
    Bolton, David
    Hwang, Yu-Wen
    Rabe, Ausma
    Albertini, Giorgio
    Wegiel, Jerzy
    JOURNAL OF NEUROSCIENCE RESEARCH, 2014, 92 (02) : 162 - 173
  • [25] Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice
    Souchet, Benoit
    Audrain, Mickael
    Billard, Jean Marie
    Dairou, Julien
    Fol, Romain
    Orefice, Nicola Salvatore
    Tada, Satoru
    Gu, Yuchen
    Dufayet-Chaffaud, Gaelle
    Limanton, Emmanuelle
    Carreaux, Francois
    Bazureau, Jean-Pierre
    Alves, Sandro
    Meijer, Laurent
    Janel, Nathalie
    Braudeau, Jerome
    Cartier, Nathalie
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2019, 7 (1) : 46
  • [26] DYRK1A kinase inhibition with emphasis on neurodegeneration: A comprehensive evolution story-cum-perspective
    Pathak, Ankita
    Rohilla, Ankit
    Gupta, Tanya
    Akhtar, Md Jawaid
    Haider, Md Rafi
    Sharma, Kalicharan
    Haider, Kashif
    Yar, M. Shahar
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2018, 158 : 559 - 592
  • [27] Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system
    Martí, E
    Altafaj, X
    Dierssen, M
    de la Luna, S
    Fotaki, V
    Alvarez, M
    Pérez-Riba, M
    Ferrer, I
    Estivill, X
    BRAIN RESEARCH, 2003, 964 (02) : 250 - 263
  • [28] Loss of the DYRK1A Protein Kinase Results in the Reduction in Ribosomal Protein Gene Expression, Ribosome Mass and Reduced Translation
    Di Vona, Chiara
    Barba, Laura
    Ferrari, Roberto
    de la Luna, Susana
    BIOMOLECULES, 2024, 14 (01)
  • [29] Novel Scaffolds for Dual Specificity Tyrosine-Phosphorylation-Regulated Kinase (DYRK1A) Inhibitors
    Czarna, Anna
    Wang, Jinhua
    Zelencova, Diana
    Liu, Yao
    Deng, Xianming
    Choi, Hwan Geun
    Zhang, Tinghu
    Zhou, Wenjun
    Chang, Jae Won
    Kildalsen, Hanne
    Seternes, Ole Morten
    Gray, Nathanael S.
    Engh, Richard A.
    Rothweiler, Ulli
    JOURNAL OF MEDICINAL CHEMISTRY, 2018, 61 (17) : 7560 - 7572
  • [30] DYRK1A Protein, A Promising Therapeutic Target to Improve Cognitive Deficits in Down Syndrome
    Feki, Anis
    Hibaoui, Youssef
    BRAIN SCIENCES, 2018, 8 (10):