Bosonization in the path integral formulation

被引:1
|
作者
Fujikawa, Kazuo [1 ]
Suzuki, Hiroshi [2 ]
机构
[1] RIKEN, Nishina Ctr, Phys Math Lab, Wako, Saitama 3510198, Japan
[2] Kyushu Univ, Dept Phys, Higashi Ku, Fukuoka 8128581, Japan
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 06期
基金
日本学术振兴会;
关键词
CHIRAL SCHWINGER MODEL; NON-ABELIAN BOSONIZATION; TWO-DIMENSIONAL MODELS; SINE-GORDON EQUATION; THIRRING MODEL; FINITE-TEMPERATURE; QUANTUM GEOMETRY; BOSE SYMMETRY; FERMIONS; STRINGS;
D O I
10.1103/PhysRevD.91.065010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We establish the direct d = 2 on-shell bosonization psi(L)(x(+)) = e(i xi(x+)) and psi(+)(R)(x(-)) and e(i xi(x-)) in path integral formulation by deriving the off-shell relations psi(L)(x)psi(+)(R)(x) = exp[i xi(x)] and psi(R)(x)psi(+)(L)(x) = exp[i xi(x)]. Similarly, the on-shell bosonization of the bosonic commuting spinor, phi(L)(x(+)) = ie-i xi(x(+))partial derivative(+) e(-ix(x+)), phi(+)(R)(x(-)) = e(-i xi(x-)-ix(x-)) and phi(R)(x(-)) = ie(i xi(x-))partial derivative(-) e(-ix(x-)), phi(+)(L)(x(+)) = e(-i xi(x+)+ix(x+),) is established in path integral formulation by deriving the off-shell relations phi(L)(x)phi(+)(R)(x) = ie-i xi(x)partial derivative(+)e(-ix(x)) and phi(R)(x)phi(+)(L)(x) = ie(i)xi(x)partial derivative(+)e(-ix(x))
引用
收藏
页数:11
相关论文
共 50 条
  • [31] COMPLETE BOSONIZATION OF TWO-DIMENSIONAL QCD IN THE PATH-INTEGRAL FRAMEWORK
    FRADKIN, E
    NAON, CM
    SCHAPOSNIK, FA
    PHYSICAL REVIEW D, 1987, 36 (12) : 3809 - 3812
  • [32] Path integral bosonization of the ‘t Hooft determinant: quasi-classical corrections
    A. A. Osipov
    B. Hiller
    The European Physical Journal C - Particles and Fields, 2004, 35 : 223 - 241
  • [33] CHIRAL BOSONIZATION OF SUPERCONFORMAL GHOSTS ON THE RIEMANN SURFACE AND PATH-INTEGRAL MEASURE
    CAROWWATAMURA, U
    EZAWA, ZF
    HARADA, K
    TEZUKA, A
    WATAMURA, S
    PHYSICS LETTERS B, 1989, 227 (01) : 73 - 80
  • [34] PATH-INTEGRAL FORMULATION OF CLOSED STRINGS
    CHAUDHURI, S
    KAWAI, H
    TYE, SHH
    PHYSICAL REVIEW D, 1987, 36 (04): : 1148 - 1168
  • [35] PATH INTEGRAL FORMULATION OF RELATIVISTIC QUANTUM MECHANICS
    GOODALL, MC
    NATURE, 1962, 196 (4852) : 370 - &
  • [36] Path integral formulation of noncommutative quantum mechanics
    Acatrinei, C
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (09):
  • [37] PATH-INTEGRAL FORMULATION OF CONFORMAL ANOMALIES
    SHIZUYA, K
    TSUKAHARA, H
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1986, 31 (04): : 553 - 556
  • [38] Path integral formulation of the Hodge duality on the brane
    Hahn, SO
    Kiem, Y
    Kim, Y
    Oh, P
    PHYSICAL REVIEW D, 2001, 64 (04)
  • [39] PATH INTEGRAL FORMULATION OF GENERAL DIFFUSION PROCESSES
    GRAHAM, R
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 26 (03): : 281 - 290
  • [40] FORMULATION OF SPONTANEOUS BREAKDOWN IN PATH INTEGRAL METHOD
    MATSUMOTO, H
    PAPASTAMATIOU, NJ
    UMEZAWA, H
    PHYSICS LETTERS B, 1973, B 46 (01) : 73 - 76