Bosonization in the path integral formulation

被引:1
|
作者
Fujikawa, Kazuo [1 ]
Suzuki, Hiroshi [2 ]
机构
[1] RIKEN, Nishina Ctr, Phys Math Lab, Wako, Saitama 3510198, Japan
[2] Kyushu Univ, Dept Phys, Higashi Ku, Fukuoka 8128581, Japan
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 06期
基金
日本学术振兴会;
关键词
CHIRAL SCHWINGER MODEL; NON-ABELIAN BOSONIZATION; TWO-DIMENSIONAL MODELS; SINE-GORDON EQUATION; THIRRING MODEL; FINITE-TEMPERATURE; QUANTUM GEOMETRY; BOSE SYMMETRY; FERMIONS; STRINGS;
D O I
10.1103/PhysRevD.91.065010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We establish the direct d = 2 on-shell bosonization psi(L)(x(+)) = e(i xi(x+)) and psi(+)(R)(x(-)) and e(i xi(x-)) in path integral formulation by deriving the off-shell relations psi(L)(x)psi(+)(R)(x) = exp[i xi(x)] and psi(R)(x)psi(+)(L)(x) = exp[i xi(x)]. Similarly, the on-shell bosonization of the bosonic commuting spinor, phi(L)(x(+)) = ie-i xi(x(+))partial derivative(+) e(-ix(x+)), phi(+)(R)(x(-)) = e(-i xi(x-)-ix(x-)) and phi(R)(x(-)) = ie(i xi(x-))partial derivative(-) e(-ix(x-)), phi(+)(L)(x(+)) = e(-i xi(x+)+ix(x+),) is established in path integral formulation by deriving the off-shell relations phi(L)(x)phi(+)(R)(x) = ie-i xi(x)partial derivative(+)e(-ix(x)) and phi(R)(x)phi(+)(L)(x) = ie(i)xi(x)partial derivative(+)e(-ix(x))
引用
收藏
页数:11
相关论文
共 50 条