Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller

被引:28
作者
Alsaade, Fawaz W. [1 ]
Yao, Qijia [2 ]
Bekiros, Stelios [3 ,4 ,5 ]
Al-zahrani, Mohammed S. [6 ]
Alzahrani, Ali S. [7 ]
Jahanshahi, Hadi [8 ]
机构
[1] King Faisal Univ, Dept Comp Sci, Coll Comp Sci & Informat Technol, Alhassa 31982, Saudi Arabia
[2] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[3] Univ Malta, FEMA, MSD, Msida 2080, Malta
[4] London Sch Econ & Polit Sci, Dept Hlth Policy, LSE Hlth, London WC2 A2AE, England
[5] IPAG Business Sch, 184 Bd St Germain, F-75006 Paris, France
[6] King Faisal Univ, Dept Comp Networks & Commun, Coll Comp Sci & Informat Technol, Alahsa 31982, Saudi Arabia
[7] King Faisal Univ, Dept Comp Engn, Coll Comp Sci & Informat Technol, Alahsa 31982, Saudi Arabia
[8] Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 5V6, Canada
关键词
Chaotic attitude synchronization; Chaotic attitude anti-synchronization; Master-slave satellites; Fixed-time control; Adaptive control; BACKSTEPPING SYNCHRONIZATION; SPACE MANIPULATOR; TRACKING CONTROL; SYSTEMS; STABILIZATION;
D O I
10.1016/j.chaos.2022.112883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the satellite attitude motion exhibits the chaotic phenomenon. This article addresses the challenging problem of chaotic attitude synchronization and anti-synchronization for master-slave satellites under unknown moments of inertia and disturbance torques. First, a fixed-time adaptive synchronization controller is designed by combining the fixed-time control technique and adaptive control technique. The parametric adaptation laws are adopted to identify the unknown parameters in the synchronization error system. Benefiting from the adaptive identifications, the proposed controller is highly robust to unknown moments of inertia and disturbance torques. The practical fixed-time stability of the resulting closed-loop system is strictly achieved. The proposed controller can guarantee all error variables in the closed-loop system regulate to the small residual sets around zero in fixed time. Then, a fixed-time adaptive anti-synchronization controller is developed in a similar way. Finally, simulations studies are conducted to demonstrate the effectiveness and excellent control performance of the proposed controllers.
引用
收藏
页数:10
相关论文
共 85 条
[31]   Optimal FPID Control Approach for a Docking Maneuver of Two Spacecraft: Translational Motion [J].
Kosari, A. ;
Jahanshahi, H. ;
Razavi, S. A. .
JOURNAL OF AEROSPACE ENGINEERING, 2017, 30 (04)
[32]   Chaotic attitude motion of satellites under small perturbation torques [J].
Kuang, J ;
Tan, SH ;
Leung, AYT .
JOURNAL OF SOUND AND VIBRATION, 2000, 235 (02) :175-200
[33]   Intelligent forecasting with machine learning trading systems in chaotic intraday Bitcoin market [J].
Lahmiri, Salim ;
Bekiros, Stelios .
CHAOS SOLITONS & FRACTALS, 2020, 133
[34]   On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control [J].
Li, Jun-Feng ;
Jahanshahi, Hadi ;
Kacar, Sezgin ;
Chu, Yu-Ming ;
Gomez-Aguilar, J. F. ;
Alotaibi, Naif D. ;
Alharbi, Khalid H. .
CHAOS SOLITONS & FRACTALS, 2021, 145
[35]   Distributed Output-Feedback Consensus Control for Nonlinear Multiagent Systems Subject to Unknown Input Delays [J].
Li, Kuo ;
Hua, Changchun ;
You, Xiu ;
Guan, Xinping .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (02) :1292-1301
[36]   Finite-Time Observer-Based Leader-Following Consensus for Nonlinear Multiagent Systems With Input Delays [J].
Li, Kuo ;
Hua, Changchun ;
You, Xiu ;
Guan, Xinping .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (12) :5850-5858
[37]   Output feedback-based consensus control for nonlinear time delay multiagent systems [J].
Li, Kuo ;
Hua, Chang-Chun ;
You, Xiu ;
Guan, Xin-Ping .
AUTOMATICA, 2020, 111
[38]   Finite time synchronization of chaotic systems [J].
Li, SH ;
Tian, YP .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :303-310
[39]   Robust synchronization of drive-response chaotic systems via adaptive sliding mode control [J].
Li, Wang-Long ;
Chang, Kuo-Ming .
CHAOS SOLITONS & FRACTALS, 2009, 39 (05) :2086-2092
[40]   Robust Adaptive Variable Structure Tracking Control for Spacecraft Chaotic Attitude Motion [J].
Liu, Chuang ;
Sun, Zhaowei ;
Ye, Dong ;
Shi, Keke .
IEEE ACCESS, 2018, 6 :3851-3857