The multiple roots phenomenon in maximum likelihood estimation for factor analysis

被引:0
作者
Gross, Elizabeth [1 ]
Petrovic, Sonja [2 ]
Richards, Donald [3 ]
Stasi, Despina [2 ]
机构
[1] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
[3] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
来源
50TH ANNIVERSARY OF GROEBNER BASES | 2018年 / 77卷
基金
美国国家科学基金会;
关键词
maximum likelihood estimation; factor analysis; multiple roots; inference; small sample; POLYNOMIAL SYSTEMS; COVARIANCE; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multiple root estimation problems in statistical inference arise in many contexts in the literature. In maximum likelihood estimation, the existence of multiple roots causes uncertainty in the computation of maximum likelihood estimators using hill-climbing algorithms, and consequent difficulties in the resulting statistical inference. In this paper, we study the multiple roots phenomenon in maximum likelihood estimation for factor analysis. We prove that the corresponding likelihood equations have uncountably many feasible solutions even in the simplest cases. For the case in which the observed data are two-dimensional and the unobserved factor scores are one-dimensional, we prove that the solutions to the likelihood equations form a one-dimensional real curve.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 17 条
  • [1] Factor Analysis with EM Algorithm Never Gives Improper Solutions when Sample Covariance and Initial Parameter Matrices Are Proper
    Adachi, Kohei
    [J]. PSYCHOMETRIKA, 2013, 78 (02) : 380 - 394
  • [2] Anderson T.W., 2002, An Introduction to Multivariate Statistical Analysis
  • [3] Anderson T.W., 1956, P 3 BERKELEY S MATH, V5, P11
  • [4] Brake D. A., P ICMS 2014
  • [5] Buot MLG, 2007, STAT SINICA, V17, P1343
  • [6] Counting and locating the solutions of polynomial systems of maximum likelihood, equations, I
    Buot, MLG
    Richards, DS
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (02) : 234 - 244
  • [7] The maximum likelihood degree
    Catanese, Fabrizio
    Hosten, Serkan
    Khetan, Amit
    Sturmfels, Bernd
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) : 671 - 697
  • [8] Cox D., 2007, UNDERGRADUATE TEXTS, V3
  • [9] Grayson D.R., MACAULAY2
  • [10] Maximum likelihood degree of variance component models
    Gross, Elizabeth
    Drton, Mathias
    Petrovic, Sonja
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 993 - 1016