Unveiling the important role of non-fullerene acceptors crystallinity on optimizing nanomorphology and charge transfer in ternary organic solar cells

被引:12
作者
Zhang, Kang-Ning [1 ]
Bi, Peng-Qing [1 ]
Wen, Zhen-Chuan [1 ]
Niu, Meng-Si [1 ]
Chen, Zhi-Hao [1 ]
Wang, Tong [1 ]
Feng, Lin [1 ]
Yang, Jun-Liang [2 ]
Hao, Xiao-Tao [1 ,3 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
[2] Cent S Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China
[3] Univ Melbourne, Sch Chem, ARC Ctr Excellence Exciton Sci, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Organic solar cells; Charge transfer; Non-fullerene acceptors; RESONANCE ENERGY-TRANSFER; NONFULLERENE ACCEPTORS; HIGHLY EFFICIENT; PERFORMANCE; DONOR; POLY(3-HEXYLTHIOPHENE);
D O I
10.1016/j.orgel.2018.07.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The crystallinity of non-fullerene acceptors as the third component has an important role on nanomorphology optimization and charge transfer dynamics of ternary organic solar cells (OSCs). Herein, efficient ternary OSCs were fabricated by incorporating two typical non-fullerene acceptors with different crystallinity, (Z)-5-{[5-(15-{5-[(Z)-(3-Ethyl-4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]-8-thia-7.9-diazabicyclo [4.3.0] nona-1 (9),2,4,6-tetraen-2-yl}-9,9,18,18-tetrakis (2-ethylhexyl)-5.14-dithiapentacyclo [10.6.0.0(3,10).0(4,8).01(3,17)]octadeca-1(12),2,4(8),6,10,13 (17),15-heptaen-6-yl)-8-thia-7.9-diazabicyclo [4.3.0]nona-1 (9),2,4,6-tetraen-2-yl]methylidene}-3-ethyl-2-thioxo-1,3-thiazolidin-4-one (EH-IDTBR) or (5Z, 5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithiophene-2,7-diyl)bis (benzo [c][1,2,5]thiadiazole7,4diyl)) bis(methanylylidene))bis (3-ethyl-2-thioxothiazolidin-4-one) (O-IDTBR), into the host donor/acceptor active layers comprising of poly (3-hexythiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C71-butyric acid methylester (PC71BM). As a result, the 21.5% and 22.7% increase of the power conversion efficiency (PCE) for the two ternary systems were achieved, respectively, which was attributed to the enhanced light harvesting capability, optimized bulk-heterojunction morphology and the formation of cascade energy level alignments that could introduce an additional pathway for efficient charge transfer. Although both the short-circuit current density (Jsc) and fill factor (FF) values were increased significantly by regulating the weight ratios of non-fullerene acceptors of two ternary systems, the O-IDTBR-based ternary OSCs showed the higher Jsc while P3HT:EH-IDTBR:PC71BM system exhibited the higher FF values. The main difference of improved photovoltaic performance in the two ternary systems could be associated with the different blend morphology and charge carrier mobilities. In addition, nanomorphology studies suggested that lamellar stacking coherence lengths of P3HT in face-on orientation for EH-IDTBR- and O-IDTBR-based systems can be increased from 18.48 nm to 20.94 nm and 21.67 nm respectively, resulting from the stronger crystallinity of O-IDTBR than that of EH-IDTBR, which was beneficial for charge transport in the vertical direction. These results indicate that selecting the appropriate crystalline non-fullerene acceptors may be an effective strategy to optimize nanomorphology to further achieve high efficiency ternary OSCs.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 28 条
[1]   Highly efficient organic tandem solar cells: a follow up review [J].
Ameri, Tayebeh ;
Li, Ning ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2390-2413
[2]   Versatile ternary organic solar cells: a critical review [J].
An, Qiaoshi ;
Zhang, Fujun ;
Zhang, Jian ;
Tang, Weihua ;
Deng, Zhenbo ;
Hu, Bin .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :281-322
[3]   Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation [J].
An, Qiaoshi ;
Zhang, Fujun ;
Sun, Qianqian ;
Wang, Jian ;
Li, Lingliang ;
Zhang, Jian ;
Tang, Weihua ;
Deng, Zhenbo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16653-16662
[4]   Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum [J].
Banerji, Natalie ;
Cowan, Sarah ;
Vauthey, Eric ;
Heeger, Alan J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) :9726-9739
[5]   An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface [J].
Bi, Peng-Qing ;
Wu, Bo ;
Zheng, Fei ;
Xu, Wei-Long ;
Yang, Xiao-Yu ;
Feng, Lin ;
Zhu, Furong ;
Hao, Xiao-Tao .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) :23212-23221
[6]   Dual Forster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor [J].
Bi, Pengqing ;
Zheng, Fei ;
Yang, Xiaoyu ;
Niu, Mengsi ;
Feng, Lin ;
Qin, Wei ;
Hao, Xiaotao .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) :12120-12130
[7]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[8]   Versatile third components for efficient and stable organic solar cells [J].
Cheng, Pei ;
Zhan, Xiaowei .
MATERIALS HORIZONS, 2015, 2 (05) :462-485
[9]   Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene [J].
Clark, Jenny ;
Silva, Carlos ;
Friend, Richard H. ;
Spano, Frank C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[10]   Laser-induced crystallization and conformation control of poly(3-hexylthiophene) for improving the performance of organic solar cells [J].
Feng, Lin ;
Zheng, Fei ;
Bi, Peng-Qing ;
Yang, Xiao-Yu ;
Niu, Meng-Si ;
Wang, Fei ;
Hao, Xiao-Tao .
ORGANIC ELECTRONICS, 2017, 49 :157-164