Estimation of water content of natural gases using particle swarm optimization method

被引:5
作者
Ahmadi, Mohammad-Ali [1 ]
Ahmad, Zainal [2 ]
Le Thi Kim Phung [3 ]
Kashiwao, Tomoaki [4 ]
Bahadori, Alireza [5 ]
机构
[1] Petr Univ Technol, Ahwaz Fac Petr Engn, Dept Petr Engn, Ahvaz, Iran
[2] Univ Sains Malaysia, Sch Chem Engn, Engn Campus, George Town, Malaysia
[3] Hochiminh City Univ Technol, Fac Chem Engn, Dept Chem Proc & Equipment, Hochiminh City, Vietnam
[4] Niihama Coll, Natl Inst Technol, Dept Elect & Control Engn, Niihama, Japan
[5] So Cross Univ, Sch Environm Sci & Engn, Lismore, NSW 2480, Australia
关键词
Artificial neural network; modeling; natural gas; particle swarm optimization; water content; ARTIFICIAL NEURAL-NETWORK; ASPHALTENE PRECIPITATION; PREDICTION; ALGORITHM; PRESSURE;
D O I
10.1080/10916466.2016.1153655
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A precise estimation of natural gas water content is a significant constraint in appropriate planning of natural gas production, processing services and transmission. The main contribution of this research is to develop a machine learning approach for predicting water content of sweet and sour natural gases. In this regard, a joining of particle swarm optimization and an artificial neural network was utilized. The suggested model presents good predictions of the sour natural gas water content with following circumstances, including CO2 contents of 0-40 mol%, H2S contents of 0-50 mol%, pressures in range from atmospheric to 70,000 KPa for sour gas and 100,000 KPa for sweet gas, and temperatures from 10-200 degrees C for sweet gases and 10-150 degrees C for sour gases.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 30 条
[21]   Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems [J].
Bahadori, Alireza ;
Vuthaluru, Hari B. .
ENERGY, 2009, 34 (11) :1910-1916
[22]   Predicting Water-Hydrocarbon Systems Mutual Solubility [J].
Bahadori, Alireza ;
Vuthaluru, Hari B. ;
Tade, Moses O. ;
Molkhatab, Saeid .
CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (12) :1743-1747
[23]  
Carroll J. J., 2002, 81 AN GPA CONV DALL
[24]  
Eberhart R., 1996, Computational intelligence PC tools
[25]  
Eberhart R., 2002, MHS95 P 6 INT S MICR, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[26]   Development of soft computing methods to predict moisture content of natural gases [J].
Ghiasi, Mohammad M. ;
Esmaeili-Jaghdan, Zohre ;
Halali, Mohamad A. ;
Lee, Moonyong ;
Abbas, Ali ;
Bahadori, Alireza .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2015, 55 :36-41
[27]  
Hubbard R., 1987, 2 TECHN M GAS PROC A
[28]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
[29]   The particle swarm: Social adaptation of knowledge [J].
Kennedy, J .
PROCEEDINGS OF 1997 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '97), 1997, :303-308
[30]  
Wichert GC, 2003, OIL GAS J, V101, P64