Prospects of Gravitational Wave Detections from Common Envelope Evolution with LISA

被引:21
作者
Renzo, M. [1 ,2 ]
Callister, T. [2 ]
Chatziioannou, K. [2 ,3 ,4 ]
van Son, L. A. C. [5 ]
Mingarelli, C. M. F. [2 ,6 ]
Cantiello, M. [2 ,7 ]
Ford, K. E. S. [2 ,8 ,9 ,10 ]
McKernan, B. [2 ,8 ,9 ,10 ]
Ashton, G. [11 ,12 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA
[3] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[4] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[5] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[6] Univ Connecticut, Dept Phys, 196 Auditorium Rd,U-3046, Storrs, CT 06269 USA
[7] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[8] CUNY, Dept Sci, Borough Manhattan Community Coll, New York, NY 10007 USA
[9] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA
[10] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[11] Royal Holloway Univ London, Egham TW20 0EX, Surrey, England
[12] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
关键词
WHITE-DWARF BINARIES; LUMINOUS RED NOVAE; DYNAMICAL FRICTION; LOW-MASS; STELLAR MERGERS; BLACK-HOLES; STARS; PROGENITORS; OBJECTS;
D O I
10.3847/1538-4357/ac1110
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Understanding common envelope (CE) evolution is an outstanding problem in binary evolution. Although the CE phase is not driven by gravitational wave (GW) emission, the inspiraling binary emits GWs that passively trace CE dynamics. Detecting this GW signal would provide direct insight into gas-driven physics. Even a non-detection might offer invaluable constraints. We investigate the prospects of detection of a Galactic CE by LISA. While the dynamical phase of the CE is likely sufficiently loud for detection, it is short and thus rare. We focus instead on the self-regulated phase that proceeds on a thermal timescale. Based on population-synthesis calculations and the (unknown) signal duration in the LISA band, we expect similar to 0.1-100 sources in the Galaxy during the mission duration. We map the GW observable parameter space of frequency f (GW) and its derivative (f) over dot(GW), remaining agnostic on the specifics of the inspiral and find that signals with signal-to-noise ratios > 10 are possible if the CE stalls at separations such that f (GW) greater than or similar to 2 x 10(-3) Hz. We investigate the possibility of misidentifying the signal with other known sources. If the second derivative (f) over dot(GW) can also be measured, the signal can be distinguished from other sources using a GW braking index. Alternatively, coupling LISA with electromagnetic observations of peculiar red giant stars and/or infrared and optical transients, might allow for the disentangling of a Galactic CE from other Galactic and extragalactic GW sources.
引用
收藏
页数:13
相关论文
共 114 条
[1]  
Aasi J., 2015, Class. Quantum Grav., V32
[2]  
Abbott R., 2020, ARXIV201014527
[3]  
Abraham S., 2020, PHYS REV D, DOI DOI 10.1103/PHYSREVD.102.072006
[4]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[5]  
[Anonymous], 2017, 170200786 ARXIV
[6]   Gravitational-wave detection rates for compact binaries formed in isolation: LIGO/Virgo O3 and beyond [J].
Baibhav, Vishal ;
Berti, Emanuele ;
Gerosa, Davide ;
Mapelli, Michela ;
Giacobbo, Nicola ;
Bouffanais, Yann ;
Di Carlo, Ugo N. .
PHYSICAL REVIEW D, 2019, 100 (06)
[7]  
Baker J, 2019, ARXIV190706482
[8]   The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range [J].
Belczynski, Krzysztof ;
Holz, Daniel E. ;
Bulik, Tomasz ;
O'Shaughnessy, Richard .
NATURE, 2016, 534 (7608) :512-+
[9]   Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015 [J].
Blagorodnova, N. ;
Karambelkar, V ;
Adams, S. M. ;
Kasliwal, M. M. ;
Kochanek, C. S. ;
Dong, S. ;
Campbell, H. ;
Hodgkin, S. ;
Jencson, J. E. ;
Johansson, J. ;
Kozlowski, S. ;
Laher, R. R. ;
Masci, F. ;
Nugent, P. ;
Rebbapragada, U. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (04) :5503-5517
[10]   COSMIC Variance in Binary Population Synthesis [J].
Breivik, Katelyn ;
Coughlin, Scott ;
Zevin, Michael ;
Rodriguez, Carl L. ;
Kremer, Kyle ;
Ye, Claire S. ;
Andrews, Jeff J. ;
Kurkowski, Michael ;
Digman, Matthew C. ;
Larson, Shane L. ;
Rasio, Frederic A. .
ASTROPHYSICAL JOURNAL, 2020, 898 (01)