Burgers equation with a stochastic initial value with homogeneous and independent increments

被引:23
作者
Carraro, L
Duchon, J
机构
[1] Ecole Natl Super Mines, Dept Methods & Modeles Math Ind, F-42023 St Etienne 2, France
[2] Univ Lyon 1, CNRS, URA 740, F-69622 Villeurbanne, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1998年 / 15卷 / 04期
关键词
D O I
10.1016/S0294-1449(98)80030-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here solutions of inviscid Burgers equation with a stochastic initial value with homogeneous and independent increments without positive jumps. We define the notion of intrinsic statistical solution of this evolution equation and show that a family (X (t); t greater than or equal to 0) of homogeneous Levy processes is an intrinsic statistical solution of Burgers equation if and only if the exponent functions psi (t, w) satisfy the differential equation: partial derivative(t)psi = i psi partial derivative(w) psi. The existence of such solutions follows then from the examination of that last equation. The case of a brownian initial condition is made explicit. (C) Elsevier, Paris.
引用
收藏
页码:431 / 458
页数:28
相关论文
共 8 条
[1]  
[Anonymous], 1992, SIAM CLASSICS APPL M
[2]  
BERTOIN P, 1996, LEVY PROCESSES
[3]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[4]  
Gihman II, 1975, THEORY STOCHASTIC PR, VII
[5]   THE PARTIAL DIFFERENTIAL EQUATION UT+UUX=MU-XX [J].
HOPF, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1950, 3 (03) :201-230
[6]  
Lax P. D., 1973, HYPERBOLIC SYSTEMS C
[7]   THE INVISCID BURGERS-EQUATION WITH INITIAL DATA OF BROWNIAN TYPE [J].
SHE, ZS ;
AURELL, E ;
FRISCH, U .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (03) :623-641
[8]   STATISTICS OF SHOCKS IN SOLUTIONS OF INVISCID BURGERS-EQUATION [J].
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (03) :601-621