Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance

被引:159
作者
Cheng, Tao
Xiao, Hai
Goddard, William A. [1 ]
机构
[1] CALTECH, Mat & Proc Simulat Ctr MSC, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
FREE-ENERGY CALCULATIONS; ELECTROCHEMICAL REDUCTION; REACTION-MECHANISMS; CU(100) ELECTRODES; 298; K; ELECTROREDUCTION; SURFACE; KINETICS; WATER; CU;
D O I
10.1021/jacs.7b03300
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent experiments show that the grain boundaries (GBs) of copper nanoparticles (NPs) lead to an outstanding performance in reducing CO2 and CO to alcohol products. We report here multiscale simulations that simulate experimental synthesis conditions to predict the structure of a 10 nm Cu NP (158 555 atoms). To identify active sites, we first predict the CO binding at a large number of sites and select four exhibiting CO binding stronger than the (211) step surface. Then, we predict the formation energy of the *OCCOH intermediate as a descriptor for C-C coupling, identifying two active sites, both of which have an under-coordinated surface square site adjacent to a subsurface stacking fault. We then propose a periodic Cu surface (4 by 4 supercell) with a similar site that substantially decreases the formation energy of *OCCOH, by 0.14 eV.
引用
收藏
页码:11642 / 11645
页数:4
相关论文
共 25 条
[1]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285
[2]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[3]   Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (08) :1795-1800
[4]   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13802-13805
[5]   Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0 [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (23) :4767-4773
[6]   Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces [J].
Durand, William J. ;
Peterson, Andrew A. ;
Studt, Felix ;
Abild-Pedersen, Frank ;
Norskov, Jens K. .
SURFACE SCIENCE, 2011, 605 (15-16) :1354-1359
[7]   A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
ACS CENTRAL SCIENCE, 2016, 2 (03) :169-174
[8]  
FOILES SM, 1986, PHYS REV B, V33, P7983, DOI 10.1103/PhysRevB.33.7983
[9]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[10]   Deactivation of copper electrode in electrochemical reduction of CO2 [J].
Hori, Y ;
Konishi, H ;
Futamura, T ;
Murata, A ;
Koga, O ;
Sakurai, H ;
Oguma, K .
ELECTROCHIMICA ACTA, 2005, 50 (27) :5354-5369