The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation

被引:197
作者
Collier, Nathan [1 ]
Hoffman, Forrest M. [1 ,2 ]
Lawrence, David M. [3 ]
Keppel-Aleks, Gretchen [4 ]
Koven, Charles D. [5 ]
Riley, William J. [5 ]
Mu, Mingquan [6 ]
Randerson, James T. [6 ]
机构
[1] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37830 USA
[2] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA
[3] Natl Ctr Atmospher Res, Climate & Global Dynam Div, POB 3000, Boulder, CO 80307 USA
[4] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[5] Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA USA
[6] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA
关键词
benchmarking; Earth system model; model evaluation; LEAF-AREA INDEX; GLOBAL PRECIPITATION; CO2; ENRICHMENT; SURFACE MODELS; CLIMATE-CHANGE; CYCLE MODELS; CARBON; PERFORMANCE; CMIP5; ASSIMILATION;
D O I
10.1029/2018MS001354
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The increasing complexity of Earth system models has inspired efforts to quantitatively assess model fidelity through rigorous comparison with best available measurements and observational data products. Earth system models exhibit a high degree of spread in predictions of land biogeochemistry, biogeophysics, and hydrology, which are sensitive to forcing from other model components. Based on insights from prior land model evaluation studies and community workshops, the authors developed an open source model benchmarking software package that generates graphical diagnostics and scores model performance in support of the International Land Model Benchmarking (ILAMB) project. Employing a suite of in situ, remote sensing, and reanalysis data sets, the ILAMB package performs comprehensive model assessment across a wide range of land variables and generates a hierarchical set of web pages containing statistical analyses and figures designed to provide the user insights into strengths and weaknesses of multiple models or model versions. Described here is the benchmarking philosophy and mathematical methodology embodied in the most recent implementation of the ILAMB package. Comparison methods unique to a few specific data sets are presented, and guidelines for configuring an ILAMB analysis and interpreting resulting model performance scores are discussed. ILAMB is being adopted by modeling teams and centers during model development and for model intercomparison projects, and community engagement is sought for extending evaluation metrics and adding new observational data sets to the benchmarking framework.
引用
收藏
页码:2731 / 2754
页数:24
相关论文
共 73 条
  • [1] Towards a benchmark for land surface models
    Abramowitz, G
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (22) : 1 - 4
  • [2] Towards a public, standardized, diagnostic benchmarking system for land surface models
    Abramowitz, G.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (03) : 819 - 827
  • [3] Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
    Adler, Robert F.
    Gu, Guojun
    Huffman, George J.
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (01) : 84 - 99
  • [4] Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models
    Anav, A.
    Friedlingstein, P.
    Kidston, M.
    Bopp, L.
    Ciais, P.
    Cox, P.
    Jones, C.
    Jung, M.
    Myneni, R.
    Zhu, Z.
    [J]. JOURNAL OF CLIMATE, 2013, 26 (18) : 6801 - 6843
  • [5] [Anonymous], 2013, NCARTN503STR
  • [6] Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models
    Arora, Vivek K.
    Boer, George J.
    Friedlingstein, Pierre
    Eby, Michael
    Jones, Chris D.
    Christian, James R.
    Bonan, Gordon
    Bopp, Laurent
    Brovkin, Victor
    Cadule, Patricia
    Hajima, Tomohiro
    Ilyina, Tatiana
    Lindsay, Keith
    Tjiputra, Jerry F.
    Wu, Tongwen
    [J]. JOURNAL OF CLIMATE, 2013, 26 (15) : 5289 - 5314
  • [7] The Plumbing of Land Surface Models: Benchmarking Model Performance
    Best, M. J.
    Abramowitz, G.
    Johnson, H. R.
    Pitman, A. J.
    Balsamo, G.
    Boone, A.
    Cuntz, M.
    Decharme, B.
    Dirmeyer, P. A.
    Dong, J.
    Ek, M.
    Guo, Z.
    Haverd, V.
    Van den Hurk, B. J. J.
    Nearing, G. S.
    Pak, B.
    Peters-Lidard, C.
    Santanello, J. A., Jr.
    Stevens, L.
    Vuichard, N.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2015, 16 (03) : 1425 - 1442
  • [8] Mapping US forest biomass using nationwide forest inventory data and moderate resolution information
    Blackard, J. A.
    Finco, M. V.
    Helmer, E. H.
    Holden, G. R.
    Hoppus, M. L.
    Jacobs, D. M.
    Lister, A. J.
    Moisen, G. G.
    Nelson, M. D.
    Riemann, R.
    Ruefenacht, B.
    Salajanu, D.
    Weyermann, D. L.
    Winterberger, K. C.
    Brandeis, T. J.
    Czaplewski, R. L.
    McRoberts, R. E.
    Patterson, P. L.
    Tymcio, R. P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1658 - 1677
  • [9] A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale
    Blyth, E.
    Clark, D. B.
    Ellis, R.
    Huntingford, C.
    Los, S.
    Pryor, M.
    Best, M.
    Sitch, S.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (02) : 255 - 269
  • [10] Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models
    Bouskill, N. J.
    Riley, W. J.
    Tang, J. Y.
    [J]. BIOGEOSCIENCES, 2014, 11 (23) : 6969 - 6983