Quasi-Lipschitz equivalence of fractals

被引:43
作者
Xi, Li-Feng [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1007/s11856-007-0053-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper proves that if E and F are dust-like C-1 self-conformal sets with 0 < H-H(dim)E (E), H-H(dim)F (F) < infinity, then there exists a bijection f: E -> F such that (dim(H)F) log vertical bar f(x) - f(y)vertical bar/(dim(H)E) log vertical bar x -y vertical bar -> 1 uniformly as vertical bar x-y vertical bar -> 0. It is also proved that a self-similar arc is Hoder equivalent to [0, 1] if and only if it is a quasi-arc.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 13 条
[1]  
COOPER D, 1988, J DIFFER GEOM, V28, P203
[2]  
Edgar G.A, 1990, Measure, Topology, and Fractal Geometry
[3]  
Falconer K., 1997, Techniques in Fractal Geometry
[4]   Classification of quasi-circles by Hausdorff dimension [J].
Falconer, K. J. ;
Marsh, D. T. .
NONLINEARITY, 1989, 2 (03) :489-493
[5]  
Falconer K. J., 1985, The geometry of fractal sets
[6]   ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS [J].
FALCONER, KJ ;
MARSH, DT .
MATHEMATIKA, 1992, 39 (78) :223-233
[7]  
HUTCHINSON JE, 1981, INDIANA U MATH J, V30, P714
[8]   UNIFORMLY PERFECT SETS AND THE POINCARE METRIC [J].
POMMERENKE, C .
ARCHIV DER MATHEMATIK, 1979, 32 (02) :192-199
[9]   Relations among Whitney sets, self-similar arcs and quasi-arcs [J].
Wen, ZY ;
Xi, LF .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 136 (1) :251-267
[10]   Lipschitz equivalence of self-conformal sets [J].
Xi, LF .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 :369-382