Deep Learning for Age Estimation Using EfficientNet
被引:4
|
作者:
论文数: 引用数:
h-index:
机构:
Aruleba, Idowu
[1
]
论文数: 引用数:
h-index:
机构:
Viriri, Serestina
[1
]
机构:
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
来源:
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I
|
2021年
/
12861卷
关键词:
Age estimation;
Classification;
Deep learning;
Transfer learning;
EfficientNet architecture;
D O I:
10.1007/978-3-030-85030-2_34
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The human face constitutes various biometric features that could be used to estimate important details from humans, such as age. The automation of age estimation has been further limited by variations in facial landmarks and appearances, together with the lack of enormous databases. These have also limited the efficiencies of conventional approaches such as the handcrafted method for adequate age estimation. More recently, Convolutional Neural Network (CNN) methods have been applied to age estimation and image classification with recorded improvements. In this work, we utilise the CNN-based EfficientNet architecture for age estimation, which, so far, has not been employed in any current study to the best of our knowledge. This research focused on applying the EfficientNet architecture to classify an individual's age in the appropriate age group using the UTKface and Adience datasets. Seven EfficientNet variants (B0-B6) were presented herein, which were fine-tuned and used to evaluate age classification efficiency. Experimentation showed that the EfficientNet-B4 variant had the best performance on both datasets with accuracy of 73.5% and 81.1% on UTKFace and Adience, respectively. The models showed a promising pathway in solving problems related to learning global features, reducing training time and computational resources.
机构:
Indian Inst Technol Indore, Dept Math, Indore 453552, IndiaIndian Inst Technol Indore, Dept Math, Indore 453552, India
Tanveer, M.
Ganaie, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USAIndian Inst Technol Indore, Dept Math, Indore 453552, India
Ganaie, M. A.
Beheshti, Iman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Manitoba, Max Rady Coll Med, Rady Fac Hlth Sci, Dept Human Anat & Cell Sci, Winnipeg, MB, CanadaIndian Inst Technol Indore, Dept Math, Indore 453552, India
机构:
King Abdulaziz Univ, Dept Comp Sci, Immers Virtual Real Res Grp, Jeddah, Saudi ArabiaPanjab Univ, Chandigarh Coll Engn & Technol, Dept CSE, Chandigarh, India
Alhalabi, Wadee
Arya, Varsha
论文数: 0引用数: 0
h-index: 0
机构:
Lebanese Amer Univ, Dept Elect & Comp Engn, Beirut 1102, Lebanon
Univ Petr & Energy Studies UPES, Ctr Interdisciplinary Res, Dehra Dun, India
Chandigarh Univ, UCRD, Chandigarh, IndiaPanjab Univ, Chandigarh Coll Engn & Technol, Dept CSE, Chandigarh, India
机构:
Univ Biskra, Lab LESIA, Biskra, Algeria
Univ Biskra, Lab LI3C, Biskra, AlgeriaHenan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Peoples R China
Guehairia, O.
Dornaika, F.
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Peoples R China
Univ Basque Country UPV, EHU, San Sebastian, Spain
IKERBASQUE, Basque Fdn Sci, Bilbao, SpainHenan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Peoples R China
Dornaika, F.
Ouamane, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Biskra, Lab LI3C, Biskra, AlgeriaHenan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Peoples R China
Ouamane, A.
Taleb-Ahmed, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Polytech Hauts France, Univ Lille, Inst Elect Microelect & Nanotechnol IEMN, UMR 8520,CNRS, F-59313 Valenciennes, FranceHenan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Peoples R China