Improving Satellite Image Fusion via Generative Adversarial Training

被引:12
|
作者
Luo, Xin [1 ,2 ,3 ,4 ]
Tong, Xiaohua [5 ]
Hu, Zhongwen [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, MNR Key Lab Geoenvironm Monitoring Great Bay Area, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Coll Life Sci & Oceanog, Shenzhen 518060, Peoples R China
[5] Tongji Univ, Coll Surveying & Geoinformat, Shanghai 200092, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 08期
基金
中国国家自然科学基金;
关键词
Image fusion; Satellites; Training; Spatial resolution; Remote sensing; Deep learning; generative adversarial networks (GANs); Landsat; 8; remote sensing image fusion; residual dense blocks; Sentinel-2; PAN-SHARPENING METHOD; SPECTRAL RESOLUTION IMAGES; MODIS IMAGES; MULTIRESOLUTION; ENHANCEMENT; REGRESSION; SCIENCE; COVER; MS;
D O I
10.1109/TGRS.2020.3025821
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The optical images acquired from satellite platforms are commonly multiresolution images, and converting multiresolution satellite images into full higher-resolution (HR) images has been a critical technique for improving the image quality. In this study, we introduced the generative adversarial network (GAN) and proposed a new fusion GAN (FusGAN) approach for solving the remote sensing image fusion problem. Specifically, we developed a new adversarial training strategy: 1) downscaled multiresolution images are adopted for generative network (G-Net) training, and 2) the discriminative network (D-Net) is used to adversarially train the G-Net by discriminating whether the original multiresolution images have been fused well enough. To further improve the capability of the network, we structured our G-Net with residual dense blocks by combining state-of-the-art residual and dense connection ideas. Our proposed FusGAN approach is evaluated both visually and quantitatively on Sentinel-2 and Landsat Operational Land Imager (OLI) multiresolution images. As demonstrated by the results, the proposed FusGAN approach outperforms the selected benchmark methods and both perfectly preserves spectral information and reconstructs spatial information in image fusion. Considering the common resolution disparities among intra- and intersatellite images, the proposed FusGAN approach can contribute to the quality improvement of satellite images and thus improve remote sensing applications.
引用
收藏
页码:6969 / 6982
页数:14
相关论文
共 50 条
  • [1] Remote Sensing Image Spatiotemporal Fusion via a Generative Adversarial Network With One Prior Image Pair
    Song, Yiyao
    Zhang, Hongyan
    Huang, He
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Infrared and Visible Image Fusion via Texture Conditional Generative Adversarial Network
    Yang, Yong
    Liu, Jiaxiang
    Huang, Shuying
    Wan, Weiguo
    Wen, Wenying
    Guan, Juwei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (12) : 4771 - 4783
  • [3] Improving Image Inpainting via Adversarial Collaborative Training
    Huang, Li
    Huang, Yaping
    Guan, Qingji
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 356 - 370
  • [4] Remote Sensing Image Spatiotemporal Fusion Using a Generative Adversarial Network
    Zhang, Hongyan
    Song, Yiyao
    Han, Chang
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4273 - 4286
  • [5] Multisensor Image Fusion based on Generative Adversarial Networks
    Lebedev, M. A.
    Komarov, D., V
    Vygolov, O. V.
    Vizilter, Yu. V.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [6] Multimodal Image Fusion Based on Generative Adversarial Networks
    Yang Xiaoli
    Lin Suzhen
    Lu Xiaofei
    Wang Lifang
    Li Dawei
    Wang Bin
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (16)
  • [7] Preference Learning to Multifocus Image Fusion via Generative Adversarial Network
    He, Min
    Yu, Shishuang
    Nie, Rencan
    Wang, Chengchao
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (04) : 1604 - 1614
  • [8] Spatiotemporal Reflectance Fusion Using a Generative Adversarial Network
    Shang, Cheng
    Li, Xinyan
    Yin, Zhixiang
    Li, Xiaodong
    Wang, Lihui
    Zhang, Yihang
    Du, Yun
    Ling, Feng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] A Unified Generative Adversarial Network With Convolution and Transformer for Remote Sensing Image Fusion
    Wu, Yuanyuan
    Huang, Mengxing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] Fusion of Hyperspectral and Panchromatic Images Using Generative Adversarial Network and Image Segmentation
    Dong, Wenqian
    Yang, Yufei
    Qu, Jiahui
    Xie, Weiying
    Li, Yunsong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60