The Picard group of the moduli of G-bundles on a curve

被引:54
作者
Beauville, A
Laszlo, Y
Sorger, C
机构
[1] Ecole Normale Super, CNRS, DMI, URA 762, F-75230 Paris 05, France
[2] Univ Paris 07, CNRS, UMR 9994, Inst Math Jussieu, F-75251 Paris, France
关键词
principal bundles; moduli spaces; determinant bundle;
D O I
10.1023/A:1000477122220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a complex semi-simple group, and X a compact Riemann surface. The moduli space of principal G-bundles on X, and in particular the holomorphic line bundles on this space and their global sections, play an important role in the recent applications of Conformal Field Theory to algebraic geometry. In this paper we determine the Picard group of this moduli space when G is of classical or G(2) type (we consider both the coarse moduli space and the moduli stack).
引用
收藏
页码:183 / 216
页数:34
相关论文
共 31 条
  • [1] [Anonymous], ELEMENTS MATH
  • [2] BEAUVILLE A, 1989, J REINE ANGEW MATH, V398, P169
  • [3] CONFORMAL BLOCKS AND GENERALIZED THETA-FUNCTIONS
    BEAUVILLE, A
    LASZLO, Y
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (02) : 385 - 419
  • [4] BROWN KS, 1982, COHOMOLOGY GROUPS GT
  • [5] THE PICARD GROUP OF VARIETIES OF MODULI OF SEMI-STABLE VECTOR-BUNDLES ON ALGEBRAIC-CURVES
    DREZET, JM
    NARASIMHAN, MS
    [J]. INVENTIONES MATHEMATICAE, 1989, 97 (01) : 53 - 94
  • [6] Faltings G., 1994, J. Algebraic Geom., V3, P347
  • [7] Faltings G., 1993, J ALGEBRAIC GEOM, V2, P507
  • [8] GROTHENDIECK A, 1960, SEMIN BOURBAKI, V221, P1
  • [9] Grothendieck A., 1958, TORSION HOMOLOGIQUE
  • [10] Harder G., 1967, Invent. math., V4, P165, DOI 10.1007/BF01425754