In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

被引:56
作者
Gong, Hao [1 ]
Xue, Hairong [1 ]
Wang, Tao [1 ]
He, Jianping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Key Lab Mat & Technol Energy Convers, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LiFePO4/carbon composites; In-situ synthesis; Micro-nano hierarchical structure; Cathode material; Lithium ion batteries; POROUS CARBON; LOW-COST; PERFORMANCE; NANOPARTICLES; POWDERS;
D O I
10.1016/j.jpowsour.2016.03.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (similar to 100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 gm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g(-1) and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of similar to 60 mAh g(-1), exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 13 g cm(-3). What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 227
页数:8
相关论文
共 38 条
[1]   Multiconstituent Synthesis of LiFePO4/C Composites with Hierarchical Porosity as Cathode Materials for Lithium Ion Batteries [J].
Anh Vu ;
Stein, Andreas .
CHEMISTRY OF MATERIALS, 2011, 23 (13) :3237-3245
[2]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[3]   Interconnected porous carbon with tunable pore size as a model substrate to confine LiFePO4 cathode material for energy storage [J].
Cheng, Fei ;
Wang, Shuai ;
Wang, Chu-Ying ;
Li, Wen-Cui .
MICROPOROUS AND MESOPOROUS MATERIALS, 2015, 204 :190-196
[4]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[5]   Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A607-A610
[6]   Wired porous cathode materials:: A novel concept for synthesis of LiFePO4 [J].
Dominko, Robert ;
Bele, Marjan ;
Goupil, Jean-Michel ;
Gaberscek, Miran ;
Hanzel, Darko ;
Arcon, Iztok ;
Jamnik, Janez .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2960-2969
[7]   Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 [J].
Gibot, Pierre ;
Casas-Cabanas, Montse ;
Laffont, Lydia ;
Levasseur, Stephane ;
Carlach, Philippe ;
Hamelet, Stephane ;
Tarascon, Jean-Marie ;
Masquelier, Christian .
NATURE MATERIALS, 2008, 7 (09) :741-747
[8]   Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route [J].
Hsu, KF ;
Tsay, SY ;
Hwang, BJ .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (17) :2690-2695
[9]   Enhanced electrochemical performances of LiFePO4/C by co-doping with magnesium and fluorine [J].
Huang, Yongan ;
Xu, Yunlong ;
Yang, Xu .
ELECTROCHIMICA ACTA, 2013, 113 :156-163
[10]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193