MTGAN: Mask and Texture-driven Generative Adversarial Network for Lung Nodule Segmentation

被引:3
作者
Chen, Wei [1 ]
Wang, Qiuli [1 ]
Wang, Kun [1 ]
Yang, Dan [1 ]
Zhang, Xiaohong [1 ]
Liu, Chen [2 ]
Li, Yucong [3 ]
机构
[1] Chongqing Univ, Sch Big Data & Software Engn, Chongqing, Peoples R China
[2] Army Med Univ, Affiliated Hosp 1, Chongqing, Peoples R China
[3] Chongqing Univ, Dept Radiol, Canc Hosp, Chongqing, Peoples R China
来源
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2021年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PULMONARY NODULES; CT SCANS; MODEL;
D O I
10.1109/ICPR48806.2021.9413064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate segmentation for lung nodules in lung computed tomography (CT) scans plays a key role in the early diagnosis of lung cancer. Many existing methods, especially U-Net, have made significant progress in lung nodule segmentation. However, due to the complex shapes of lung nodules and the similarity of visual characteristics between nodules and lung tissues, an accurate segmentation with low false positives of lung nodules is still a challenging problem. Considering the fact that both boundary and texture information of lung nodules are important for obtaining an accurate segmentation result, we propose a novel Mask and Texture-driven Generative Adversarial Network (MTGAN) with a joint multi-scale L(1)( )loss for lung nodule segmentation, which takes full advantages of U-Net and adversarial training. The proposed MTGAN lever-ages adversarial learning strategy guided by the boundary and texture information of lung nodules to generate more accurate segmentation results with lesser false positives. We validate our model with the LIDC-IDRI dataset, and experimental results show that our method achieves excellent segmentation results for a variety of lung nodules, especially for juxtapleural nodules and low-dense nodules. Without any bells and whistles, the proposed MTGAN achieves significant segmentation performance with the Dice similarity coefficient (DSC) of 85.24% on the LIDC-IDRI dataset.
引用
收藏
页码:1029 / 1035
页数:7
相关论文
共 38 条
[1]  
Amorim Paulo H. J., 2019, VipIMAGE 2019. Proceedings of the VII ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing. Lecture Notes in Computational Vision and Biomechanics (LNCVB 34), P286, DOI 10.1007/978-3-030-32040-9_30
[2]  
[Anonymous], 2017, RETINAL VESSEL SEGME
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]   Normal Appearance Autoencoder for Lung Cancer Detection and Segmentation [J].
Astaraki, Mehdi ;
Toma-Dasu, Iuliana ;
Smedby, Orjan ;
Wang, Chunliang .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 :249-256
[5]   Dual-branch residual network for lung nodule segmentation [J].
Cao, Haichao ;
Liu, Hong ;
Song, Enmin ;
Hung, Chih-Cheng ;
Ma, Guangzhi ;
Xu, Xiangyang ;
Jin, Renchao ;
Lu, Jianguo .
APPLIED SOFT COMPUTING, 2020, 86
[6]   Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach [J].
Dehmeshi, Jamshid ;
Amin, Hamdan ;
Valdivieso, Manlio ;
Ye, Xujiong .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) :467-480
[7]   Automated Segmentation Refinement of Small Lung Nodules in CT Scans by Local Shape Analysis [J].
Diciotti, Stefano ;
Lombardo, Simone ;
Falchini, Massimo ;
Picozzi, Giulia ;
Mascalchi, Mario .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (12) :3418-3428
[8]   A Novel Approach for Lung Nodules Segmentation in Chest CT Using Level Sets [J].
Farag, Amal A. ;
Abd El Munim, Hossam E. ;
Graham, James H. ;
Farag, Aly A. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) :5202-5213
[9]  
Feng Xinyang, 2017, Med Image Comput Comput Assist Interv, V10435, P568, DOI 10.1007/978-3-319-66179-7_65
[10]   Hessian based approaches for 3D lung nodule segmentation [J].
Goncalves, L. ;
Novo, J. ;
Campilho, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 61 :1-15