Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z 2 Symmetry

被引:8
作者
Cliffe, K. Andrew [1 ]
Hall, Edward J. C. [1 ]
Houston, Paul [1 ]
Phipps, Eric T. [2 ]
Salinger, Andrew G. [2 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Sandia Natl Labs, Comp Sci Res Inst, Albuquerque, NM 87185 USA
基金
英国工程与自然科学研究理事会;
关键词
Incompressible flows; Bifurcation problems; A posteriori error estimation; Adaptivity; Discontinuous Galerkin methods; Z(2) symmetry; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATIONS; BREAKING BIFURCATION;
D O I
10.1007/s10915-010-9453-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation occurs when the underlying physical system possesses reflectional or Z (2) symmetry. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to bifurcation problems. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
引用
收藏
页码:389 / 418
页数:30
相关论文
共 50 条
[1]  
AINSWORTH M, 1996, SERIES COMPUTATIONAL
[2]   Hybrid scheduling for the parallel solution of linear systems [J].
Amestoy, PR ;
Guermouche, A ;
L'Excellent, JY ;
Pralet, S .
PARALLEL COMPUTING, 2006, 32 (02) :136-156
[3]   Multifrontal parallel distributed symmetric and unsymmetric solvers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :501-520
[4]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[5]  
[Anonymous], 2003, Lectures in mathematics ETH Zurich
[6]  
[Anonymous], 1998, Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, DOI DOI 10.1137/1.9780898719628
[7]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[9]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[10]  
BABUSKA I, 1992, POSTERIORI ERROR EST