Invariant forms, associated bundles and Calabi-Yau metrics

被引:2
作者
Conti, Diego [1 ]
机构
[1] Univ Milan, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
vector bundle; special geometry; Calabi-Yau; symplectic cone;
D O I
10.1016/j.geomphys.2007.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a method, initially due to Salamon, for computing the space of "invariant" forms on an associated bundle X = P x(G) V, with a suitable notion of invariance. We determine sufficient conditions for this space to be d-closed. We apply our method to the construction of Calabi-Yau metrics on TCP1 and TCP2. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2483 / 2508
页数:26
相关论文
共 21 条
  • [1] SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY
    ATIYAH, MF
    HITCHIN, NJ
    SINGER, IM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711): : 425 - 461
  • [2] REAL KILLING SPINORS AND HOLONOMY
    BAR, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) : 509 - 521
  • [3] Introduction to the GiNaC framework for symbolic computation within the C++ programming language
    Bauer, C
    Frink, A
    Kreckel, R
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (01) : 1 - 12
  • [4] Biquard O, 1997, LECT NOTES PURE APPL, V184, P287
  • [5] Bredon G. E., 1972, PURE APPL MATH, V46
  • [6] ON THE CONSTRUCTION OF SOME COMPLETE METRICS WITH EXCEPTIONAL HOLONOMY
    BRYANT, RL
    SALAMON, SM
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 58 (03) : 829 - 850
  • [7] CALABI E, 1979, ANN SCI ECOLE NORM S, V12, P269
  • [8] CONTI D, 2005, SPECIAL HOLONOMY HYP
  • [9] CONTI D, UNPUB CALABI YAU CON
  • [10] Generalized killing spinors in dimension 5
    Conti, Diego
    Salamon, Simon
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) : 5319 - 5343