Binomial approximation to the Poisson binomial distribution: The Krawtchouk expansion

被引:39
作者
Roos, B [1 ]
机构
[1] Univ Hamburg, Inst Math Stochast, D-20146 Hamburg, Germany
关键词
binomial approximation; Poisson binomial distribution; Krawtchouk expansion; signed measures; total variation distance; point metric;
D O I
10.1137/S0040585X9797821X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson binomial distribution is approximated by a binomial distribution and also by finite signed measures resulting from the corresponding Krawtchouk expansion. Bounds and asymptotic relations for the total variation distance and the point metric are given.
引用
收藏
页码:258 / 272
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1960, PAC J MATH, DOI DOI 10.2140/PJM.1960.10.1181
[2]  
Barbour AD, 1992, Poisson approximation
[3]   A NEW SEMIGROUP TECHNIQUE IN POISSON APPROXIMATION [J].
DEHEUVELS, P ;
PFEIFER, D ;
PURI, ML .
SEMIGROUP FORUM, 1989, 38 (02) :189-201
[4]   A SEMIGROUP APPROACH TO POISSON APPROXIMATION [J].
DEHEUVELS, P ;
PFEIFER, D .
ANNALS OF PROBABILITY, 1986, 14 (02) :663-676
[5]   ON A RELATIONSHIP BETWEEN USPENSKY THEOREM AND POISSON APPROXIMATIONS [J].
DEHEUVELS, P ;
PFEIFER, D .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1988, 40 (04) :671-681
[6]   ASYMPTOTIC EXPANSIONS FOR SUMS OF NONIDENTICALLY DISTRIBUTED BERNOULLI RANDOM-VARIABLES [J].
DEHEUVELS, P ;
PURI, ML ;
RALESCU, SS .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (02) :282-303
[7]   BINOMIAL APPROXIMATION TO THE POISSON BINOMIAL-DISTRIBUTION [J].
EHM, W .
STATISTICS & PROBABILITY LETTERS, 1991, 11 (01) :7-16
[8]  
Feller W., 1968, INTRO PROBABILITY TH
[9]  
Franken P., 1964, Math. Nachr., V27, P303
[10]  
JAKSEVICIUS S, 1992, LITHUANIAN MATH J, V32, P174