Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction

被引:42
作者
Cronin, Mark T. D. [1 ]
Richarz, Andrea-Nicole [2 ]
Schultz, Terry W. [3 ]
机构
[1] Liverpool John Moores Univ, Sch Pharm & Biomol Sci, Byrom St, Liverpool L3 3AF, Merseyside, England
[2] European Commiss, JRC, Ispra, Italy
[3] Univ Tennessee, Coll Vet Med, Knoxville, TN USA
关键词
QSAR; Toxicity prediction; Uncertainty; Variability; Bias; Influence; Barriers; Assessment criteria; DECISION-MAKING FRAMEWORKS; READ-ACROSS; APPLICABILITY DOMAIN; HUMAN HEALTH; MODELS; RISK; QUALITY;
D O I
10.1016/j.yrtph.2019.04.007
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Improving regulatory confidence in, and acceptance of, a prediction of toxicity from a quantitative structure-activity relationship (QSAR) requires assessment of its uncertainty and determination of whether the uncertainty is acceptable. Thus, it is crucial to identify potential uncertainties fundamental to QSAR predictions. Based on expert review, sources of uncertainties, variabilities and biases, as well as areas of influence in QSARs for toxicity prediction were established. These were grouped into three thematic areas: uncertainties, variabilities, potential biases and influences associated with 1) the creation of the QSAR, 2) the description of the QSAR, and 3) the application of the QSAR, also showing barriers for their use. Each thematic area was divided into a total of 13 main areas of concern with 49 assessment criteria covering all aspects of QSAR development, documentation and use. Two case studies were undertaken on different types of QSARs that demonstrated the applicability of the assessment criteria to identify potential weaknesses in the use of a QSAR for a specific purpose such that they may be addressed and mitigation strategies can be proposed, as well as enabling an informed decision on the adequacy of the model in the considered context.
引用
收藏
页码:90 / 104
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 2009, SCI DEC ADV RISK ASS, DOI DOI 10.17226/12209
[2]  
[Anonymous], 2017, READ ACR ASS FRAM RA
[3]  
[Anonymous], 2001, Risk assessment guidance for superfundprocess for conducting probabilistic risk assessment
[4]  
[Anonymous], 2012, GUIDANCE INFORM REQU
[5]   Cognitive biases and decision support systems development: a design science approach [J].
Arnott, D .
INFORMATION SYSTEMS JOURNAL, 2006, 16 (01) :55-78
[6]   Toward Good Read-Across Practice (GRAP) Guidance [J].
Ball, Nicholas ;
Cronin, Mark T. D. ;
Shen, Jie ;
Blackburn, Karen ;
Booth, Ewan D. ;
Bouhifd, Mounir ;
Donley, Elizabeth ;
Egnash, Laura ;
Hastings, Charles ;
Juberg, Daland R. ;
Kleensang, Andre ;
Kleinstreuer, Nicole ;
Kroese, E. Dinant ;
Lee, Adam C. ;
Luechtefeld, Thomas ;
Maertens, Alexandra ;
Marty, Sue ;
Naciff, Jorge M. ;
Palmer, Jessica ;
Pamies, David ;
Penman, Mike ;
Richarz, Andrea-Nicole ;
Russo, Daniel P. ;
Stuard, Sharon B. ;
Patlewicz, Grace ;
van Ravenzwaay, Bennard ;
Wu, Shengde ;
Zhu, Hao ;
Hartung, Thomas .
ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2016, 33 (02) :149-166
[7]   The challenge of using read-across within the EU REACH regulatory framework; how much uncertainty is too much? Dipropylene glycol methyl ether acetate, an exemplary case study [J].
Ball, Nicholas ;
Bartels, Michael ;
Budinsky, Robert ;
Klapacz, Joanna ;
Hays, Sean ;
Kirman, Christopher ;
Patlewicz, Grace .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2014, 68 (02) :212-221
[8]   The principles and methods behind EFSA's Guidance on Uncertainty Analysis in Scientific Assessment [J].
Benford, Diane ;
Halldorsson, Thorhallur ;
Jeger, Michael John ;
Knutsen, Helle Katrine ;
More, Simon ;
Naegeli, Hanspeter ;
Noteborn, Hubert ;
Ockleford, Colin ;
Ricci, Antonia ;
Rychen, Guido ;
Schlatter, Josef R. ;
Silano, Vittorio ;
Solecki, Roland ;
Turck, Dominique ;
Younes, Maged ;
Craig, Peter ;
Hart, Andrew ;
Von Goetz, Natalie ;
Koutsoumanis, Kostas ;
Mortensen, Alicja ;
Ossendorp, Bernadette ;
Germini, Andrea ;
Martino, Laura ;
Merten, Caroline ;
Mosbach-Schulz, Olaf ;
Smith, Anthony ;
Hardy, Anthony .
EFSA JOURNAL, 2018, 16 (01)
[9]   Guidance on Uncertainty Analysis in Scientific Assessments [J].
Benford, Diane ;
Halldorsson, Thorhallur ;
Jeger, Michael John ;
Knutsen, Helle Katrine ;
More, Simon ;
Naegeli, Hanspeter ;
Noteborn, Hubert ;
Ockleford, Colin ;
Ricci, Antonia ;
Rychen, Guido ;
Schlatter, Josef R. ;
Silano, Vittorio ;
Solecki, Roland ;
Turck, Dominique ;
Younes, Maged ;
Craig, Peter ;
Hart, Andrew ;
Von Goetz, Natalie ;
Koutsoumanis, Kostas ;
Mortensen, Alicja ;
Ossendorp, Bernadette ;
Martino, Laura ;
Merten, Caroline ;
Mosbach-Schulz, Olaf ;
Hardy, Anthony .
EFSA JOURNAL, 2018, 16 (01)
[10]   Computational modelling for decision-making: where, why, what, who and how [J].
Calder, Muffy ;
Craig, Claire ;
Culley, Dave ;
de Cani, Richard ;
Donnelly, Christl A. ;
Douglas, Rowan ;
Edmonds, Bruce ;
Gascoigne, Jonathon ;
Gilbert, Nigel ;
Hargrove, Caroline ;
Hinds, Derwen ;
Lane, David C. ;
Mitchell, Dervilla ;
Pavey, Giles ;
Robertson, David ;
Rosewell, Bridget ;
Sherwin, Spencer ;
Walport, Mark ;
Wilson, Alan .
ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06)