Shelf Ecosystems Along the US Atlantic Coastal Plain Prior to and During the Paleocene-Eocene Thermal Maximum: Insights Into the Stratigraphic Architecture

被引:7
|
作者
Doubrawa, Monika [1 ]
Stassen, Peter [1 ,2 ]
Robinson, Marci M. [3 ]
Babila, Tali L. [4 ]
Zachos, James C. [5 ]
Speijer, Robert P. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Earth & Environm Sci, Leuven, Belgium
[2] Royal Belgian Inst Nat Sci, OD Earth & Hist Life, Brussels, Belgium
[3] US Geol Survey, Florence Bascom Geosci Ctr, 959 Natl Ctr, Reston, VA 22092 USA
[4] Univ Southampton, Sch Ocean & Earth Sci, Southampton, Hants, England
[5] Univ Calif Santa Cruz, Earth & Planetary Sci, Santa Cruz, CA 95064 USA
关键词
Paleocene-Eocene Thermal Maximum (PETM); pre-onset excursion (POE); shelf ecosystem; benthic foraminifera; South Dover Bridge; stratigraphy; BENTHIC FORAMINIFERA; CONTINENTAL-SHELF; LATEST PALEOCENE; CRETACEOUS/PALEOGENE BOUNDARY; TEMPERATURE EVOLUTION; CARBON RELEASE; PROXY DATA; OCEAN; CLIMATE; MARINE;
D O I
10.1029/2022PA004475
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Paleocene-Eocene Thermal Maximum (PETM) is the most pronounced global warming event of the early Paleogene related to atmospheric CO2 increases. It is characterized by negative delta O-18 and delta C-13 excursions recorded in sedimentary archives and a transient disruption of the marine biosphere. Sites from the U.S. Atlantic Coastal Plain show an additional small, but distinct delta C-13 excursion below the onset of the PETM, coined the "pre-onset excursion" (POE), mimicking the PETM-forced environmental perturbations. This study focuses on the South Dover Bridge core in Maryland, where the Paleocene-Eocene transition is stratigraphically constrained by calcareous nannoplankton and stable isotope data, and in which the POE is well-expressed. The site was situated in a middle neritic marine shelf setting near a major outflow of the paleo-Potomac River system. We generated high-resolution benthic foraminiferal assemblage, stable isotope, trace-metal, grain-size and clay mineralogy data. The resulting stratigraphic subdivision of this Paleocene-Eocene transition is placed within a depth transect across the paleoshelf, highlighting that the PETM sequence is relatively expanded. The geochemical records provide detailed insights into the paleoenvironment, developing from a well-oxygenated water column in latest Paleocene to a PETM-ecosystem under severe biotic stress-conditions, with shifts in food supply and temperature, and under dysoxic bottom waters in a more river-dominated setting. Environmental changes started in the latest Paleocene and culminated atthe onset of the PETM, hinting to an intensifying trigger rather than to an instantaneous event at the Paleocene-Eocene boundary toppling the global system.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Reworked pollen reduces apparent floral change during the Paleocene-Eocene Thermal Maximum
    Korasidis, Vera A.
    Wing, Scott L.
    Nelson, David M.
    Baczynski, Allison A.
    GEOLOGY, 2022, 50 (12) : 1398 - 1402
  • [32] Impact of organic carbon reworking upon GDGT temperature proxies during the Paleocene-Eocene Thermal Maximum
    Inglis, Gordon N.
    Martinez-Sosa, Pablo
    Tierney, Jessica E.
    Witkowski, Caitlyn R.
    Lyons, Shelby
    Baczynski, Allison A.
    Freeman, Katherine H.
    ORGANIC GEOCHEMISTRY, 2023, 183
  • [33] Tropical ocean temperatures and changes in terrigenous flux during the Paleocene-Eocene Thermal Maximum in southern Tibet
    Jin, Simin
    Li, Guobiao
    Li, Juan
    Hu, Xiumian
    Yang, Huan
    Huang, Chunju
    Baoke, Zhantu
    Algeo, Thomas J.
    Kemp, David B.
    GLOBAL AND PLANETARY CHANGE, 2023, 230
  • [34] Deep-sea ostracode turnovers through the Paleocene-Eocene thermal maximum in DSDP Site 401, Bay of Biscay, North Atlantic
    Yamaguchi, Tatsuhiko
    Norris, Richard D.
    MARINE MICROPALEONTOLOGY, 2012, 86-87 : 32 - 44
  • [35] Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling
    Sluijs, A.
    van Roij, L.
    Harrington, G. J.
    Schouten, S.
    Sessa, J. A.
    LeVay, L. J.
    Reichart, G-J
    Slomp, C. P.
    CLIMATE OF THE PAST, 2014, 10 (04) : 1421 - 1439
  • [36] Terrestrial methane cycle perturbations during the onset of the Paleocene-Eocene Thermal Maximum
    Inglis, Gordon N.
    Rohrssen, Megan
    Kennedy, Elizabeth M.
    Crouch, Erica M.
    Raine, J. Ian
    Strogen, Dominic P.
    Naafs, B. David A.
    Collinson, Margaret E.
    Pancost, Richard D.
    GEOLOGY, 2021, 49 (05) : 520 - 524
  • [37] Shallow marine ecosystem collapse and recovery during the Paleocene-Eocene Thermal Maximum
    Tian, Skye Yunshu
    Yasuhara, Moriaki
    Huang, Huai-Hsuan M.
    Condamine, Fabien L.
    Robinson, Marci M.
    GLOBAL AND PLANETARY CHANGE, 2021, 207
  • [38] Evidence for Poleward Migration of the Asian Monsoon During the Paleocene-Eocene Thermal Maximum
    Teng, Xiaohua
    Wang, Chunlian
    Zhang, Jingyu
    Yan, Kai
    Yu, Xiaocan
    Zhang, Dawen
    Sluijs, Appy
    PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2025, 40 (02)
  • [39] Spatiotemporal evolution of wildfire activity during the Paleocene-Eocene Thermal Maximum in China
    Wang, Xue-Ting
    Chen, Zuoling
    Cui, Linlin
    Wang, Xu
    SCIENCE CHINA-EARTH SCIENCES, 2025, 68 (02) : 509 - 522
  • [40] Examining possible effects of seawater pH decline on foraminiferal stable isotopes during the Paleocene-Eocene Thermal Maximum
    Uchikawa, Joji
    Zeebe, Richard E.
    PALEOCEANOGRAPHY, 2010, 25