Shelf Ecosystems Along the US Atlantic Coastal Plain Prior to and During the Paleocene-Eocene Thermal Maximum: Insights Into the Stratigraphic Architecture

被引:7
|
作者
Doubrawa, Monika [1 ]
Stassen, Peter [1 ,2 ]
Robinson, Marci M. [3 ]
Babila, Tali L. [4 ]
Zachos, James C. [5 ]
Speijer, Robert P. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Earth & Environm Sci, Leuven, Belgium
[2] Royal Belgian Inst Nat Sci, OD Earth & Hist Life, Brussels, Belgium
[3] US Geol Survey, Florence Bascom Geosci Ctr, 959 Natl Ctr, Reston, VA 22092 USA
[4] Univ Southampton, Sch Ocean & Earth Sci, Southampton, Hants, England
[5] Univ Calif Santa Cruz, Earth & Planetary Sci, Santa Cruz, CA 95064 USA
关键词
Paleocene-Eocene Thermal Maximum (PETM); pre-onset excursion (POE); shelf ecosystem; benthic foraminifera; South Dover Bridge; stratigraphy; BENTHIC FORAMINIFERA; CONTINENTAL-SHELF; LATEST PALEOCENE; CRETACEOUS/PALEOGENE BOUNDARY; TEMPERATURE EVOLUTION; CARBON RELEASE; PROXY DATA; OCEAN; CLIMATE; MARINE;
D O I
10.1029/2022PA004475
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Paleocene-Eocene Thermal Maximum (PETM) is the most pronounced global warming event of the early Paleogene related to atmospheric CO2 increases. It is characterized by negative delta O-18 and delta C-13 excursions recorded in sedimentary archives and a transient disruption of the marine biosphere. Sites from the U.S. Atlantic Coastal Plain show an additional small, but distinct delta C-13 excursion below the onset of the PETM, coined the "pre-onset excursion" (POE), mimicking the PETM-forced environmental perturbations. This study focuses on the South Dover Bridge core in Maryland, where the Paleocene-Eocene transition is stratigraphically constrained by calcareous nannoplankton and stable isotope data, and in which the POE is well-expressed. The site was situated in a middle neritic marine shelf setting near a major outflow of the paleo-Potomac River system. We generated high-resolution benthic foraminiferal assemblage, stable isotope, trace-metal, grain-size and clay mineralogy data. The resulting stratigraphic subdivision of this Paleocene-Eocene transition is placed within a depth transect across the paleoshelf, highlighting that the PETM sequence is relatively expanded. The geochemical records provide detailed insights into the paleoenvironment, developing from a well-oxygenated water column in latest Paleocene to a PETM-ecosystem under severe biotic stress-conditions, with shifts in food supply and temperature, and under dysoxic bottom waters in a more river-dominated setting. Environmental changes started in the latest Paleocene and culminated atthe onset of the PETM, hinting to an intensifying trigger rather than to an instantaneous event at the Paleocene-Eocene boundary toppling the global system.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Perturbation of a Tethyan coastal environment during the Paleocene-Eocene thermal maximum in Tunisia (Sidi Nasseur and Wadi Mezaz)
    Stassen, Peter
    Dupuis, Christian
    Steurbaut, Etienne
    Yans, Johan
    Speijer, Robert P.
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2012, 317 : 66 - 92
  • [22] Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum
    Penman, Donald E.
    Hoenisch, Baerbel
    Zeebe, Richard E.
    Thomas, Ellen
    Zachos, James C.
    PALEOCEANOGRAPHY, 2014, 29 (05): : 357 - 369
  • [23] Sea-level and salinity fluctuations during the Paleocene-Eocene thermal maximum in Arctic Spitsbergen
    Harding, Ian C.
    Charles, Adam J.
    Marshall, John E. A.
    Paelike, Heiko
    Roberts, Andrew P.
    Wilson, Paul A.
    Jarvis, Edward
    Thorne, Robert
    Morris, Emily
    Moremon, Rebecca
    Pearce, Richard B.
    Akbari, Shir
    EARTH AND PLANETARY SCIENCE LETTERS, 2011, 303 (1-2) : 97 - 107
  • [24] GLOMOSPIRA ACME DURING THE PALEOCENE-EOCENE THERMAL MAXIMUM: RESPONSE TO CACO3 DISSOLUTION OR TO ECOLOGICAL FORCES?
    Arreguin-Rodriguez, Gabriela J.
    Alegret, Laia
    Ortiz, Silvia
    JOURNAL OF FORAMINIFERAL RESEARCH, 2013, 43 (01) : 40 - 54
  • [25] Swift Weathering Response on Floodplains During the Paleocene-Eocene Thermal Maximum
    Ramos, Evan J.
    Breecker, Daniel O.
    Barnes, Jaime D.
    Li, Fangliang
    Gingerich, Philip D.
    Loewy, Staci L.
    Satkoski, Aaron M.
    Baczynski, Allison A.
    Wing, Scott L.
    Miller, Nathaniel R.
    Lassiter, John C.
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (06)
  • [26] Environmental instability during the latest Paleocene at Zumaia (Basque-Cantabric Basin): The bellwether of the Paleocene-Eocene Thermal Maximum
    Alegret, Laia
    Reolid, Matias
    Vega Perez, Manuel
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2018, 497 : 186 - 200
  • [27] Extreme warming of tropical waters during the Paleocene-Eocene Thermal Maximum
    Aze, T.
    Pearson, P. N.
    Dickson, A. J.
    Badger, M. P. S.
    Bown, P. R.
    Pancost, R. D.
    Gibbs, S. J.
    Huber, B. T.
    Leng, M. J.
    Coe, A. L.
    Cohen, A. S.
    Foster, G. L.
    GEOLOGY, 2014, 42 (09) : 739 - 742
  • [28] Response of calcareous nannofossils to the Paleocene-Eocene thermal maximum from a shelf section in Jordan
    Gomez, Victor M. Giraldo
    Linnert, Christian
    Podlaha, Olaf G.
    Mutterlose, Joerg
    MARINE MICROPALEONTOLOGY, 2016, 127 : 11 - 25
  • [29] Unraveling the Paleocene-Eocene thermal maximum in shallow marine Tethyan environments: the Tunisian stratigraphic record
    Stassen, Peter
    Dupuis, Christian
    Steurbaut, Etienne
    Yans, Johan
    Storme, Jean-Yves
    Morsi, Abdel-Mohsen
    Lacumin, Paola
    Speijer, Robert P.
    NEWSLETTERS ON STRATIGRAPHY, 2013, 46 (01) : 69 - 91
  • [30] Faunal turnovers in central Pacific benthic foraminifera during the Paleocene-Eocene thermal maximum
    Takeda, Kotaro
    Kaiho, Kunio
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 251 (02) : 175 - 197