Fe-based metallic glass reinforced FeCoCrNiMn high entropy alloy through selective laser melting

被引:59
作者
Li, Ning [1 ,2 ]
Wu, Shixing
Ouyang, Di [1 ,2 ]
Zhang, Jianji
Liu, Lin
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
关键词
Selective laser melting; High entropy alloy; Metallic glass; Composite; Mechanical properties; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MICROSTRUCTURE; EVOLUTION;
D O I
10.1016/j.jallcom.2020.153695
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the comprehensive mechanical properties of metallic materials has attracted great attentions. Here, FeCoCrNiMn high entropy alloy composite with combined high strength and toughness was fabricated by selective laser melting. The intriguing finding is that two different high entropy phases in addition to amorphous phase were detected at the high-entropy alloy and metallic glass interfacial region. With increasing the fraction of Fe-based metallic glass, the composite exhibited enhanced strength above 1000 MPa and excellent fracture toughness over 100 MPa m(1/2), demonstrating potential engineering applications. The above scenario is fundamentally understood according to the high mixing entropy and sluggish effects, as well as the little atomic size difference that facilitates the generation of new high entropy phase. The combined high strength and toughness of the composite is well understood in terms of the dispersion strengthening. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 2011, E182011E2 ASTM INT
[2]   Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5Ox (x=0.05, 0.1, 0.2) high-entropy alloys [J].
Chen, Yiwen ;
Li, Yunkai ;
Cheng, Xingwang ;
Xu, Ziqi ;
Wu, Chao ;
Cheng, Bo ;
Wang, Meng .
MATERIALS LETTERS, 2018, 228 :145-147
[3]   Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J].
Chou, Y. L. ;
Wang, Y. C. ;
Yeh, J. W. ;
Shih, H. C. .
CORROSION SCIENCE, 2010, 52 (10) :3481-3491
[4]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[5]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[6]  
Gao M. C., 2016, HIGH ENTROPY ALLOYS
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy [J].
Hadraba, Hynek ;
Chlup, Zdenek ;
Dlouhy, Antonin ;
Dobes, Ferdinand ;
Roupcova, Pavia ;
Vilemova, Monika ;
Matejicek, Jiri .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 :252-256
[9]   Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J].
He, J. Y. ;
Liu, W. H. ;
Wang, H. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
Lu, Z. P. .
ACTA MATERIALIA, 2014, 62 :105-113
[10]   Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy [J].
Laplanche, G. ;
Kostka, A. ;
Horst, O. M. ;
Eggeler, G. ;
George, E. P. .
ACTA MATERIALIA, 2016, 118 :152-163