Thermal and chemical stability of the β-W2N nitride phase

被引:18
作者
Mateus, R. [1 ]
Sequeira, M. C. [1 ]
Porosnicu, C. [2 ]
Lungu, C. P. [2 ]
Hakola, A. [3 ]
Alves, E. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Natl Inst Lasers Plasma & Radiat Phys, Bucharest 077125, Romania
[3] VTT Tech Res Ctr Finland Ltd, Espoo, Finland
关键词
Beryllium; Tungsten; Nitride; Thermal stability; PLASMA-FACING SURFACES; LAYERS; JET;
D O I
10.1016/j.nme.2017.03.040
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Pure Be, W and Be: W mixed coatings with nominal compositions of (5:5) and (1:9) were deposited on silicon plates and implanted at room temperature with 30 keV N+ ions with fluences up to 5e17 ions/cm(2). Ion beam and X-ray diffraction analysis evidenced the formation of the alpha-Be3N2 and beta-W2N nitrides. The identified tungsten nitride phase evolves from a BCC W lattice to a BCC W(N) solid solution after irradiating at a fluence of 1e17 N+/cm(2) and to the compact FCC beta-W2N structure at 5e17 N+ /cm(2). Thermal stability of beta-W2N was investigated by annealing the coatings for 1 h up to 1073 K. The results point to the release of non-bonded nitrogen solute in beta-W2N over the annealing range and to the thermal stability of the nitride phase up to 1073 K. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:462 / 467
页数:6
相关论文
共 20 条
[1]  
Alegre D, 2015, ROM REP PHYS, V67, P532
[2]   Simulated annealing analysis of Rutherford backscattering data [J].
Barradas, NP ;
Jeynes, C ;
Webb, RP .
APPLIED PHYSICS LETTERS, 1997, 71 (02) :291-293
[3]  
Cullity B.D., 1978, Elements of X-Ray Diffraction, VSecond
[4]   The implications of mixed-material plasma-facing surfaces in ITER [J].
Doerner, R. P. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) :32-40
[5]   Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements [J].
Guillemaut, C. ;
Jardin, A. ;
Horacek, J. ;
Borodkina, I. ;
Autricque, A. ;
Arnoux, G. ;
Boom, J. ;
Brezinsek, S. ;
Coenen, J. W. ;
De La Luna, E. ;
Devaux, S. ;
Eich, T. ;
Harting, D. ;
Kirschner, A. ;
Lipschultz, B. ;
Matthews, G. F. ;
Meigs, A. ;
Moulton, D. ;
O'Mullane, M. ;
Stamp, M. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. .
PHYSICA SCRIPTA, 2016, T167
[6]   Comprehensive modeling of ELMs and their effect on plasma-facing surfaces during normal tokamak operation [J].
Hassanein, A ;
Konkashbaev, I .
JOURNAL OF NUCLEAR MATERIALS, 2003, 313 :664-669
[7]  
KHITROVA VI, 1959, SOVIET PHYS CRYSTALL, V0004
[8]  
Kieffer R., 1963, HARTSTOFFE
[9]   Beryllium coatings on metals for marker tiles at JET: development of process and characterization of layers [J].
Lungu, C. P. ;
Mustata, I. ;
Zaroschi, V. ;
Lungu, A. M. ;
Anghel, A. ;
Chiru, P. ;
Rubel, M. ;
Coad, P. ;
Matthews, G. F. .
PHYSICA SCRIPTA, 2007, T128 :157-161
[10]   The behavior of W, Be and C layers in interaction with plasma produced by terawatt laser beam pulses [J].
Lungu, C. P. ;
Porosnicu, C. ;
Jepu, I. ;
Lungu, M. ;
Marcu, A. ;
Luculescu, C. ;
Ticos, C. ;
Marin, A. ;
Grigorescu, C. E. A. .
VACUUM, 2014, 110 :207-212