Measure-theoretic sensitivity via finite partitions

被引:17
作者
Li, Jian [1 ,2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] Shantou Univ, Guangdong Prov Key Lab Digital Signal & Image Pro, Shantou 515063, Guangdong, Peoples R China
关键词
measure-theoretic sensitivity; finite measurable partitions; maximal pattern entropy; INITIAL CONDITIONS; SYSTEMS; EQUICONTINUITY; DEPENDENCE; DYNAMICS; CHAOS;
D O I
10.1088/0951-7715/29/7/2133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For every positive integer n >= 2, we introduce the concept of measure-theoretic n-sensitivity for measure-theoretic dynamical systems via finite measurable partitions, and show that an ergodic system is measure-theoretically n-sensitive but not (n + 1)-sensitive if and only if its maximal pattern entropy is log n.
引用
收藏
页码:2133 / 2144
页数:12
相关论文
共 30 条
  • [1] Chaotic properties of mappings on a probability space
    Abraham, C
    Biau, G
    Cadre, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) : 420 - 431
  • [2] Abramov L., 1966, Amer. Math. Soc. Transl. Ser., P255
  • [3] Abramov L. M., 1962, VESTNIK LENINGRAD U, V17, P5
  • [4] Akin E, 1996, OHIO ST U M, V5, P25
  • [5] Li-Yorke sensitivity
    Akin, E
    Kolyada, S
    [J]. NONLINEARITY, 2003, 16 (04) : 1421 - 1433
  • [6] [Anonymous], 2008, THESIS
  • [7] Auslander J., 1980, Tohoku Math. J., V32, P177, DOI [10.2748/tmj/1178229634, DOI 10.2748/TMJ/1178229634]
  • [8] On pairwise sensitivity
    Cadre, B
    Jacob, P
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (01) : 375 - 382
  • [9] Measure-theoretic chaos
    Downarowicz, Tomasz
    Lacroix, Yves
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 110 - 131
  • [10] Garcia-Ramos F, 2016, ERGOD THEOR DYNAM SY