Transport inequalities, gradient estimates, entropy, and Ricci curvature

被引:271
作者
Von Renesse, MK
Sturm, KT
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
D O I
10.1002/cpa.20060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present various characterizations of uniform lower bounds for the Ricci curvature of a smooth Riemannian manifold M in terms of convexity properties of the entropy (considered as a function on the space of probability measures on M) as well as in terms of transportation inequalities for volume measures, heat kernels, and Brownian motions and in terms of gradient estimates for the heat semi-group. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:923 / 940
页数:18
相关论文
共 16 条
[1]  
Ane C., 2000, Sur les inegalites de Sobolev logarithmiques
[2]  
BAKRY D, 1984, CR ACAD SCI I-MATH, V299, P775
[3]  
BURAGO D., 2001, A course in metric geometry, V33
[4]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[5]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257
[6]   Singular dissipative stochastic equations in Hilbert spaces [J].
Da Prato, G ;
Röckner, M .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (02) :261-303
[7]  
ETHIER SN, 1986, WILEY SERIES PROBABI
[8]  
Gallot S., 1990, RIEMANNIAN GEOMETRY
[9]  
Gromov M., 1999, PROGR MATH, V152
[10]   Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality [J].
Otto, F ;
Villani, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 173 (02) :361-400