Three-dimensional simulation of MHD flow with turbulence (reduction of turbulence to two-dimensional one in downstream)

被引:5
作者
Ueno, K [1 ]
Saito, K
Kamiyama, S
机构
[1] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[2] Chubu Elect Power Co, Hekinan 4470824, Japan
[3] Akita Prefectural Univ, Fac Syst Sci & Technol, Tsuchiya, Honjo 0150055, Japan
关键词
magnetohydrodynamics; turbulence; computational fluid dynamics; liquid metal; Karman vortex; MHD diffusion; two-dimensional turbulence;
D O I
10.1299/jsmeb.44.38
中图分类号
O414.1 [热力学];
学科分类号
摘要
A uniform transverse magnetic field is imposed on liquid metal MHD flows. Spatial development of Karman vortex between two insulator walls is numerically simulated. When a strong magnetic field is imposed, MHD diffusion reduces the vortices including three-dimensional component to quasi-two-dimensional ones in downstream. The condition for development of two-dimensional turbulence is discussed.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 25 条
[1]  
ALBOUSSIERE T, 1997, P 3 INT C TRANSF PHE, P197
[2]  
BRANOVER H, 1995, FUSION ENG DES, V27, P719, DOI 10.1016/0920-3796(94)00272-9
[3]   MAGNETO-FLUID-MECHANIC CHANNEL FLOW .I. EXPERIMENT [J].
BROUILET.EC ;
LYKOUDIS, PS .
PHYSICS OF FLUIDS, 1967, 10 (05) :995-&
[4]   Instabilities in quasi-two-dimensional magnetohydrodynamic flows [J].
Buhler, L .
JOURNAL OF FLUID MECHANICS, 1996, 326 :125-150
[5]  
GELFGAT YM, 1971, MAGNETOHYDRODYNAMICS, V7, P319
[6]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&
[7]   MAGNETOHYDRODYNAMIC FLOW IN RECTANGULAR DUCTS [J].
HUNT, JCR .
JOURNAL OF FLUID MECHANICS, 1965, 21 :577-&
[8]   MAGNETOHYDRODYNAMIC FLOW IN RECTANGULAR DUCTS .2. [J].
HUNT, JCR ;
STEWARTSON, K .
JOURNAL OF FLUID MECHANICS, 1965, 23 :563-+
[9]  
Kajishima Takeo, 1994, T JPN SOC MECH ENG, V60, P2058
[10]   APPLICATION OF A FRACTIONAL-STEP METHOD TO INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
KIM, J ;
MOIN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (02) :308-323