Decomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertainty

被引:59
作者
Bouchekara, Houssem Rafik El-Hana [1 ]
Javaid, Muhammad Sharjeel [1 ]
Shaaban, Yusuf Abubakar [1 ]
Shahriar, Mohammad Shoaib [1 ]
Ramli, Makbul Anwari Muhammad [2 ]
Latreche, Yaqoub [3 ]
机构
[1] Univ Hafr Al Batin, Dept Elect Engn, Hafar al Batin 31991, Saudi Arabia
[2] King Abdulaziz Univ, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] Univ Freres Mentouri Constantine, Modelling Energy Renewable Devices & NanoMetr MoD, Constantine 25000, Algeria
关键词
Hybrid system; Wind energy; PV; Decomposition based multi-objective evolutionary algorithm; Load uncertainty; ENERGY SUPPLY OPTIONS; SOLAR-WIND SYSTEM; RENEWABLE ENERGY; FEASIBILITY ANALYSIS; OPTIMIZATION; MANAGEMENT; STORAGE; OPERATION; LOCATIONS; PROSPECTS;
D O I
10.1016/j.egyr.2020.11.102
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper aims to optimally design a PV/Wind/Diesel Hybrid Microgrid System (HMS) for a small number of houses considering load uncertainty for the city of Yanbu, Saudi Arabia. Designing such a hybrid system with all the renewable and non-renewable sources, storage devices, converters, and loads is a complicated task. A multiobjective approach has been adopted to optimize the microgrid design. Two methodologies are available for solving such multiobjective problems. In the first approach, the problem is transformed into a single objective one (using aggregation, for instance), whereas, the second technique treats objectives simultaneously and independently as adopted in this paper. The proposed approach offers the Pareto front; a set of solutions in one run opening the door of choosing the most suitable solution from the available options based on the experience, expertise and requirement of the designer. This paper presents a novel approach of using Decomposition Based Multiobjective Evolutionary Algorithm (MOEA/D) to optimally design the PV/Wind/Diesel HMS considering load uncertainty. Loss of Power Supply Probability (LPSP) and Cost of Electricity (COE) are considered as the objective functions of the optimization problem. Furthermore, two separate load cases of 5 and 10 houses are tested to verify the robustness of the approach. The obtained results are beneficial in assisting researchers and practitioners in selecting the optimal configuration of the microgrid. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:52 / 69
页数:18
相关论文
共 71 条
[1]   Review and comparison study of hybrid diesel/solar/hydro/fuel cell energy schemes for a rural ICT Telecenter [J].
Abdullah, M. O. ;
Yung, V. C. ;
Anyi, M. ;
Othman, A. K. ;
Hamid, K. B. Ab. ;
Tarawe, J. .
ENERGY, 2010, 35 (02) :639-646
[2]   Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator [J].
Acuna, Luceny Guzman ;
Padilla, Ricardo Vasquez ;
Mercado, Alcides Santander .
RENEWABLE ENERGY, 2017, 106 :68-77
[3]   Performance of a stand-alone renewable energy system based on energy storage as hydrogen [J].
Agbossou, K ;
Kolhe, M ;
Hamelin, J ;
Bose, TK .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (03) :633-640
[4]   Wind energy resource assessment for five locations in Saudi Arabia [J].
Al-Abbadi, NM .
RENEWABLE ENERGY, 2005, 30 (10) :1489-1499
[5]   Optimization of hybrid PV-wind system: Case study Al-Tafilah cement factory, Jordan [J].
Al-Ghussain, Loiy ;
Ahmed, Humayun ;
Haneef, Fahad .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2018, 30 :24-36
[6]  
[Anonymous], 2006, WIND ENG
[7]  
[Anonymous], 2019, IEC 61400-3-1:2019
[8]   An optimum dispatch strategy using set points for a photovoltaic (PV)-diesel-battery hybrid power system [J].
Ashari, M ;
Nayar, CV .
SOLAR ENERGY, 1999, 66 (01) :1-9
[9]   Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The "flexy-energy" concept [J].
Azoumah, Y. ;
Yamegueu, D. ;
Ginies, P. ;
Coulibaly, Y. ;
Girard, P. .
ENERGY POLICY, 2011, 39 (01) :131-141
[10]  
Bechrakis D. A., 2000, Wind Engineering, V24, P127, DOI 10.1260/0309524001495503