Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrodinger equation

被引:82
作者
de Vyver, HV
机构
关键词
explicit Runge-Kutta methods; exponential fitting; phase fitting; radial Schrodinger equation; resonance problem; bound-states problem;
D O I
10.1016/j.cpc.2004.11.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new fourth-order explicit Runge-Kutta method based on an approach of Simos is developed in this paper. Numerical experiments reveal that the new method is much more efficient than other special tuned RK methods and the Numerov method for the numerical solution of the radial Schrodinger equation for large energies. An error analysis is made and the asymptotic expressions of the local errors for large energies explain the numerical results in the case of the resonance problem. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 32 条
[1]   An embedded exponentially-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation and related periodic initial-value problems [J].
Avdelas, G ;
Simos, TE ;
Vigo-Aguiar, J .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 131 (1-2) :52-67
[2]   RUNGE-KUTTA ALGORITHMS FOR OSCILLATORY PROBLEMS [J].
BETTIS, DG .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (04) :699-704
[3]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[4]   2-STEP 4TH ORDER P-STABLE METHODS FOR 2ND ORDER DIFFERENTIAL-EQUATIONS [J].
CHAWLA, MM .
BIT, 1981, 21 (02) :190-193
[5]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[6]   Mixed collocation methods for y" = f(x,y) [J].
Coleman, JP ;
Duxbury, SC .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 126 (1-2) :47-75
[7]   Runge-Kutta-Nystrom methods adapted to the numerical integration of perturbed oscillators [J].
Franco, JM .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (03) :770-787
[8]   New methods for oscillatory problems based on classical code [J].
García, A ;
Martín, P ;
González, AB .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :141-157
[9]  
Gautschi W., 1961, NUMER MATH, V3, P381, DOI DOI 10.1007/BF01386037
[10]   A new family of Runge-Kutta type methods for the numerical integration of perturbed oscillators [J].
González, AB ;
Martín, P ;
Farto, JM .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :635-646