Hausdorff dimension of the arithmetic sum of self-similar sets

被引:5
作者
Jiang, Kan [1 ]
机构
[1] Univ Utrecht, Fac Wiskunde Informat & MRI, Dept Math, Budapestlaan 6,POB 80-000, NL-3508 TA Utrecht, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2016年 / 27卷 / 03期
基金
中国国家自然科学基金;
关键词
Arithmetic sum; Self-similar sets; Hausdorff dimension;
D O I
10.1016/j.indag.2016.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let beta > 1. We define a class of similitudes S := { f(i) (x) = x/beta(n)(i) + a(i) : n(i) is an element of N+, a(i) is an element of R}. Taking any finite collection of similitudes {f(i) (x)}(i=1)(m) from S, it is well known that there is a unique self similar set K-1 satisfying K-1 = U(i=1)(m)f(i) (K-1). Similarly, another self-similar set K-2 can be generated via the finite contractive maps of S. We call K-1 + K-2 = {x + y : x is an element of K-1, y is an element of K-2) the arithmetic sum of two self-similar sets. In this paper, we prove that K-1 + K-2 is either a self-similar set or a unique attractor of some infinite iterated function system. Using this result we can calculate the exact Hausdorff dimension of K-1 + K-2 under some conditions, which partially provides the dimensional result of K-1 + K-2 if the IFS's of K-1 and K-2 fail the irrationality assumption, see Peres and Shmerkin (2009). (C) 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:684 / 701
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 1990, FRACTAL GEOMETRY
[2]   On the arithmetic sums of Cantor sets [J].
Eroglu, Kemal Ilgar .
NONLINEARITY, 2007, 20 (05) :1145-1161
[3]  
FERNAU H, 1994, MATH NACHR, V170, P79
[4]   Remarks on limit sets of infinite iterated function systems [J].
Hille, Martial R. .
MONATSHEFTE FUR MATHEMATIK, 2012, 168 (02) :215-237
[5]   On self-similar sets with overlaps and inverse theorems for entropy [J].
Hochman, Michael .
ANNALS OF MATHEMATICS, 2014, 180 (02) :773-822
[6]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[7]  
Mauldin RD, 1996, P LOND MATH SOC, V73, P105
[8]   ON THE TOPOLOGICAL-STRUCTURE OF THE ARITHMETIC SUM OF 2 CANTOR SETS [J].
MENDES, P ;
OLIVEIRA, F .
NONLINEARITY, 1994, 7 (02) :329-343
[9]  
Mihail A, 2009, MATH REP, V11, P21
[10]   Hausdorff measure of infinitely generated self-similar sets [J].
Moran, M .
MONATSHEFTE FUR MATHEMATIK, 1996, 122 (04) :387-399