Uniqueness for a wave propagation inverse problem in a half-space

被引:21
作者
Lassas, M
Cheney, M
Uhlmann, G
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
[2] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
关键词
D O I
10.1088/0266-5611/14/3/017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers an inverse problem for wave propagation in a perturbed, dissipative half-space. The perturbation is assumed to be compactly supported. This paper shows that in dimension three, the perturbation is uniquely determined by knowledge of the Dirichlet-to-Neumann map on an open subset of the boundary.
引用
收藏
页码:679 / 684
页数:6
相关论文
共 20 条
[1]  
CHENEY M, 1995, INVERSE PROBL, V11, P856
[2]  
Colton D., 2019, Inverse Acoustic and Electromagnetic Scattering, V93
[3]  
Dettman J. W, 1965, Applied Complex Variables
[4]  
ESKIN G, 1997, INVERSE COEFFICIENT
[5]  
FADDEEV LD, 1965, DOKL AKAD NAUK SSSR+, V165, P514
[6]  
JACKSON JD, 1975, CLASSICIAL ELECTRODY
[7]  
KIRSCH A, 1996, INTRO MATH THEORY IN
[8]  
Melrose R, 1995, GEOMETRIC SCATTERING
[9]   RECONSTRUCTIONS FROM BOUNDARY MEASUREMENTS [J].
NACHMAN, AI .
ANNALS OF MATHEMATICS, 1988, 128 (03) :531-576
[10]   A propagation backpropagation method for ultrasound tomography [J].
Natterer, F ;
Wubbeling, F .
INVERSE PROBLEMS, 1995, 11 (06) :1225-1232