Absence of Infinite Cluster for Critical Bernoulli Percolation on Slabs

被引:14
作者
Duminil-Copin, Hugo [1 ]
Sidoravicius, Vladas [2 ,3 ,4 ]
Tassion, Vincent [1 ,5 ]
机构
[1] Univ Geneva, Dept Math, 2-4 Rue Lievre,Case Postale 64, CH-1211 Geneva 4, Switzerland
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
[3] Courant Inst, 251 Mercer St, New York, NY 10012 USA
[4] NYU Shanghai, Math Res Inst, NYU ECNU, Shanghai, Peoples R China
[5] Ecole Normale Super Lyon, Lyon, France
基金
瑞士国家科学基金会;
关键词
UNIQUENESS; CONTINUITY; DENSITY; SQUARE; PHASE; MODEL;
D O I
10.1002/cpa.21641
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for Bernoulli percolation on a graph Z(2) x {0, ... , k} (k >= 0), there is no infinite cluster at criticality, almost surely. The proof extends to finite-range Bernoulli percolation models on Z(2) that are invariant under pi/2-rotation and reflection. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1397 / 1411
页数:15
相关论文
共 21 条
[1]   UNIQUENESS OF THE INFINITE CLUSTER AND CONTINUITY OF CONNECTIVITY FUNCTIONS FOR SHORT AND LONG-RANGE PERCOLATION [J].
AIZENMAN, M ;
KESTEN, H ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (04) :505-531
[2]   DISCONTINUITY OF THE PERCOLATION DENSITY IN ONE-DIMENSIONAL 1[X-Y]2 PERCOLATION MODELS [J].
AIZENMAN, M ;
NEWMAN, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :611-647
[3]  
Aizenman M., 2013, ARXIV13111937MATHPH
[4]  
[Anonymous], 1960, Mathematical Proceedings of the Cambridge Philosophical Society, DOI [DOI 10.1017/S0305004100034241, 10.1017/S0305004100034241]
[5]   Continuum percolation with steps in the square or the disc [J].
Balister, P ;
Bollobás, B ;
Walters, M .
RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (04) :392-403
[6]  
Barsky D. J., 1991, PROGR PROBABILITY, V19
[7]   PERCOLATION IN HALF-SPACES - EQUALITY OF CRITICAL DENSITIES AND CONTINUITY OF THE PERCOLATION PROBABILITY [J].
BARSKY, DJ ;
GRIMMETT, GR ;
NEWMAN, CM .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (01) :111-148
[8]  
Benjamini I, 1999, ANN PROBAB, V27, P1347
[9]   Mean-field driven first-order phase transitions in systems with long-range interactions [J].
Biskup, M ;
Chayes, L ;
Crawford, N .
JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (06) :1139-1193
[10]   DENSITY AND UNIQUENESS IN PERCOLATION [J].
BURTON, RM ;
KEANE, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (03) :501-505