Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries

被引:505
作者
Chen, Tao [1 ,2 ]
Zhang, Zewen [1 ,2 ]
Cheng, Baorui [1 ,2 ]
Chen, Renpeng [1 ,2 ]
Hu, Yi [1 ,2 ]
Ma, Lianbo [1 ,2 ]
Zhu, Guoyin [1 ,2 ]
Liu, Jie [1 ,2 ,3 ]
Jin, Zhong [1 ,2 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, Collaborat Innovat Ctr Chem Life Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
中国博士后科学基金;
关键词
HIGH-CAPACITY; PERFORMANCE; POLYSULFIDE; CATHODE; ELECTRODE; LIFE; NANOSHEETS; SPHERES; COMPOSITES; NANOFIBERS;
D O I
10.1021/jacs.7b06973
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur batteries (Li-S) have attracted soaring attention due to the particularly high energy density for advanced energy storage system. However, the practical application of Li-S batteries still faces multiple challenges, including the shuttle effect of intermediate polysulfides, the low conductivity of sulfur and the large volume variation of sulfur cathode. To overcome these issues, here we reported a self-templated approach to prepare interconnected carbon nanotubes inserted/wired hollow Co3S4 nanoboxes (CNTs/Co3S4-NBs) as an efficient sulfur host material. Originating from the combination of three-dimensional CNT conductive network and polar Co3S4-NBs, the obtained hybrid nanocomposite of CNTs/Co3S4-NBs can offer ultrahigh charge transfer properties, and efficiently restrain polysulfides in hollow Co3S4-NBs via the synergistic effect of structural confinement and chemical bonding. Benefiting from the above advantages, the S@CNTs/Co3S4-NBs cathode shows a significantly improved electrochemical performance in terms of high reversible capacity, good rate performance, and long-term cyclability. More remarkably, even at an elevated temperature (50 degrees C), it still exhibits high capacity retention and good rate capacity.
引用
收藏
页码:12710 / 12715
页数:6
相关论文
共 61 条
[1]   PREPARATION AND ELECTRICAL PROPERTIES OF SOME THIOSPINELS [J].
BOUCHARD, RJ ;
RUSSO, PA ;
WOLD, A .
INORGANIC CHEMISTRY, 1965, 4 (05) :685-&
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries [J].
Dong, Yanfeng ;
Liu, Shaohong ;
Wang, Zhiyu ;
Liu, Yang ;
Zhao, Zongbin ;
Qiu, Jieshan .
NANOSCALE, 2015, 7 (17) :7569-7573
[4]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+
[5]   A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries [J].
Gu, Xingxing ;
Tong, Chuan-jia ;
Lai, Chao ;
Qiu, Jingxia ;
Huang, Xiaoxiao ;
Yang, Wenlong ;
Wen, Bo ;
Liu, Li-min ;
Hou, Yanglong ;
Zhang, Shanqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16670-16678
[6]   High-Energy, High-Rate, Lithium-Sulfur Batteries: Synergetic Effect of Hollow TiO2-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer [J].
Hwang, Jang-Yeon ;
Kim, Hee Min ;
Lee, Sang-Kyu ;
Lee, Joo-Hyeong ;
Abouimrane, Ali ;
Khaleel, Mohammad Ahmed ;
Belharouak, Ilias ;
Manthiram, Arumugam ;
Sun, Yang-Kook .
ADVANCED ENERGY MATERIALS, 2016, 6 (01)
[7]   Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries [J].
Jayaprakash, N. ;
Shen, J. ;
Moganty, Surya S. ;
Corona, A. ;
Archer, Lynden A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (26) :5904-5908
[8]   Stabilizing lithium-sulphur cathodes using polysulphide reservoirs [J].
Ji, Xiulei ;
Evers, Scott ;
Black, Robert ;
Nazar, Linda F. .
NATURE COMMUNICATIONS, 2011, 2
[9]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
[10]   Rational Design of Lithium-Sulfur Battery Cathodes Based on Experimentally Determined Maximum Active Material Thickness [J].
Klein, Michael J. ;
Veith, Gabriel M. ;
Manthiram, Arumugam .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (27) :9229-9237