Problems on Graphs with Fixed Smallest Eigenvalue

被引:1
作者
Koolen, Jack [1 ]
Yang, Qianqian [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Wen Tsun Wu Key Lab CAS, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
s-integrability; lattice; graph;
D O I
10.1142/S100538672000005X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we give several problems and conjectures on graphs with fixed smallest eigenvalue.
引用
收藏
页码:51 / 54
页数:4
相关论文
共 9 条
  • [1] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [2] LINE GRAPHS, ROOT SYSTEMS, AND ELLIPTIC GEOMETRY
    CAMERON, PJ
    GOETHALS, JM
    SEIDEL, JJ
    SHULT, EE
    [J]. JOURNAL OF ALGEBRA, 1976, 43 (01) : 305 - 327
  • [3] Cvetkovic D., 2004, Spectral Generalizations of Line Graphs. On Graphs with Least Eigenvalue -2
  • [4] Ebeling W., 1994, ADV LECT MATH
  • [5] Godsil C., 2001, Algebraic Graph Theory
  • [6] GRAPHS WHOSE LEAST EIGENVALUE EXCEEDS-1-SQUARE-ROOT-2
    HOFFMAN, AJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1977, 16 (02) : 153 - 165
  • [7] On the Integrability of Strongly Regular Graphs
    Koolen, Jack H.
    Rehman, Masood Ur
    Yang, Qianqian
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1273 - 1291
  • [8] A generalization of a theorem of Hoffman
    Koolen, Jack H.
    Yang, Qianqian
    Yang, Jae Young
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 135 : 75 - 95
  • [9] On graphs with smallest eigenvalue at least-3 and their lattices
    Koolen, Jack H.
    Yang, Jae Young
    Yang, Qianqian
    [J]. ADVANCES IN MATHEMATICS, 2018, 338 : 847 - 864