NECESSARY AND SUFFICIENT KKT OPTIMALITY CONDITIONS IN NON-CONVEX MULTI-OBJECTIVE OPTIMIZATION PROBLEMS WITH CONE CONSTRAINTS

被引:0
作者
Sisarat, Nithirat [1 ]
Wangkeeree, Rabian [2 ,3 ]
机构
[1] Naresuan Univ, Fac Sci, Dept Math, Phitsanulok 65000, Thailand
[2] Naresuan Univ, Phitsanulok 65000, Thailand
[3] Naresuan Univ, Res Ctr Acad Excellence Math, Phitsanulok 65000, Thailand
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2019年 / 15卷 / 03期
关键词
non-convex multi-objective optimization; cone-convex functions; level set; Karush-Kuhn-Tucker optimality conditions;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with a class of differentiable multi-objective optimization problems (MOP) over cone constraints without the convexity of the feasible set, and the cone-convexity of objectives and constraint functions. We present constraint qualifications for these (MOP) problems and establish the relationships among them. We also present necessary and sufficient the Karush-Kuhn-Tucker (KKT) optimality conditions for a weak Pareto minimum as well as a Pareto minimum to (MOP). Our main results improve some recent ones in the literature. Illustrative examples are also provided to guarantee the advantages of each of our results.
引用
收藏
页码:477 / 490
页数:14
相关论文
共 24 条
[1]  
Aggarwal S., 1998, THESIS
[2]  
Al-Homidan S, 2012, VECTOR OPTIM, P221, DOI 10.1007/978-3-642-21114-0_7
[3]  
[Anonymous], 1896, Course Economic Politique
[4]   A characterization of quasiconvex vector-valued functions [J].
Benoist, J ;
Borwein, JM ;
Popovici, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1109-1113
[5]   Constraint qualifications for convex optimization without convexity of constraints : New connections and applications to best approximation [J].
Chieu, N. H. ;
Jeyakumar, V. ;
Li, G. ;
Mohebi, H. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 265 (01) :19-25
[6]   Optimality conditions in convex optimization revisited [J].
Dutta, Joydeep ;
Lalitha, C. S. .
OPTIMIZATION LETTERS, 2013, 7 (02) :221-229
[7]  
Ehrgott M., 2005, MULTICRITERIA OPTIMI, Vvol. 491
[8]   Optimality conditions for pseudoconvex minimization over convex sets defined by tangentially convex constraints [J].
Enrique Martinez-Legaz, Juan .
OPTIMIZATION LETTERS, 2015, 9 (05) :1017-1023
[9]   Necessary and sufficient KKT optimality conditions in non-convex optimization [J].
Ho, Quyen .
OPTIMIZATION LETTERS, 2017, 11 (01) :41-46
[10]  
Jahn J., 2003, VECTOR OPTIMIZATION