Buckling and post-buckling of a nonlinearly elastic column

被引:17
作者
Brojan, M. [1 ]
Puksic, A. [1 ]
Kosel, F. [1 ]
机构
[1] Univ Ljubljana, Fac Mech Engn, Ljubljana 1000, Slovenia
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2007年 / 87卷 / 07期
关键词
stability; post-buckling; material nonlinearity; large deflections; critical force; Ludwick formula; bifurcation; limit load; finite disturbance buckling;
D O I
10.1002/zamm.200710333
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical problem of buckling of an inextensible elastic column, under the action of a compressive force is examined. The column is made of nonlinearly elastic material for which the stress-strain relation is represented by the Ludwick constitutive law. An approximative formula for determination of the force at immediate post-buckling is given. Further post-buckling solutions are obtained for different values of the nonlinearity parameter by numerical integration using the Runge-Kutta-Fehlberg algorithm, and are presented in non-dimensional diagrams. It is shown that no bifurcation point is found in the case of nonlinearly elastic column. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:518 / 527
页数:10
相关论文
共 17 条
[1]  
Antman S. S., 1995, NONLINEAR PROBLEMS E
[2]  
Fu YB, 2001, Nonlinear elasticity: theory and applications
[3]   Large deflection analysis of fibers with nonlinear elastic properties [J].
Jung, JH ;
Kang, TJ .
TEXTILE RESEARCH JOURNAL, 2005, 75 (10) :715-723
[4]   VARIATIONAL-PRINCIPLES FOR NONLINEAR BUCKLING OF ELASTIC-COLUMNS - (A REVIVAL OF EULERS THEORY) [J].
KOMKOV, V .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (09) :419-433
[5]  
Korobeinikov S. N., 1995, P 4 INT C LAVR READ, P104
[6]   ELASTICA TYPE BUCKLING ANALYSIS OF BARS FROM NONLINEARLY ELASTIC-MATERIAL [J].
KOUNADIS, AN ;
MALLIS, JG .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (02) :99-107
[7]  
KUZNETSOV VV, 1999, PRIKL MEKH TEKH FIZ, V40, P184
[8]  
LEVYAKOV SV, 2001, PRIKL MEKH TEKH FIZ, V42, P153
[9]   LARGE DEFLECTIONS OF CANTILEVER BEAMS OF NON-LINEAR MATERIALS OF THE LUDWICK TYPE SUBJECTED TO AN END MOMENT [J].
LEWIS, G ;
MONASA, F .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1982, 17 (01) :1-6
[10]  
Love AEH, 1972, TREATISE MATH THEORY