Riemann ζ function from wave-packet dynamics

被引:14
作者
Mack, R. [1 ]
Dahl, J. P. [1 ,2 ]
Moya-Cessa, H. [1 ,3 ]
Strunz, W. T. [4 ]
Walser, R. [1 ,5 ]
Schleich, W. P. [1 ]
机构
[1] Univ Ulm, Inst Quantenphys, D-89069 Ulm, Germany
[2] Tech Univ Denmark, Dept Chem, DTU 207, DK-2800 Lyngby, Denmark
[3] Inst Nacl Astrofis Opt & Electr, Puebla 72000, Mexico
[4] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[5] Tech Univ Darmstadt, Inst Angew Phys, D-64289 Darmstadt, Germany
关键词
LOGARITHMIC POTENTIALS; POWER-LAW; STATES; ATOM; GENERATION; ELECTRONS; EQUATION; CURVES;
D O I
10.1103/PhysRevA.82.032119
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann zeta function zeta(s, a). Indeed, the autocorrelation function at a time t is determined by zeta (sigma + i tau, a), where sigma is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials display a universal behavior; they take the shape of a logarithm. However, their form close to the origin depends on the value of the Hurwitz parameter a in zeta (s, a). In particular, we establish a connection between the value of the potential energy at its minimum, the Hurwitz parameter and the Maslov index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms in appropriately tailored light fields.
引用
收藏
页数:15
相关论文
共 77 条
[11]  
Chadan K., 1997, An Introduction to Inverse Scattering and Inverse Spectral Problems
[12]  
Child M.S., 2014, Semiclassical Mechanics with Molecular Applications
[13]   The power law and the logarithmic potentials [J].
Ciftci, H ;
Ateser, E ;
Koru, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (13) :3821-3828
[14]   QUANTUM STATES WITH MINIMUM-PHASE UNCERTAINTY FOR THE SUSSMANN MEASURE [J].
DAEUBLER, B ;
MILLER, C ;
RISKEN, H ;
SCHOENDORFF, L .
PHYSICA SCRIPTA, 1993, T48 :119-123
[15]   The JWKB method in central-field problems. Planar radial wave equation and resolution of Kramers' dilemma [J].
Dahl, JP ;
Schleich, WP .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (41) :8713-8720
[16]   ON THE OSCILLATORY DECAY OF ATOMIC WIGNER FUNCTIONS [J].
DAHL, JP .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (09) :2727-2731
[17]  
Davenport H., 2000, MULTIPLICATIVE NUMBE
[18]   Reconstruction of non-classical cavity field states with snapshots of their decoherence [J].
Deleglise, Samuel ;
Dotsenko, Igor ;
Sayrin, Clement ;
Bernu, Julien ;
Brune, Michel ;
Raimond, Jean-Michel ;
Haroche, Serge .
NATURE, 2008, 455 (7212) :510-514
[19]   A neutral atom and a wire: towards mesoscopic atom optics [J].
Denschlag, J ;
Cassettari, D ;
Chenet, A ;
Schneider, S ;
Schmiedmayer, J .
APPLIED PHYSICS B-LASERS AND OPTICS, 1999, 69 (04) :291-301
[20]  
DERBYSHIRE J, 2004, PRIME OBSESSION