Two-point correlation function of the fractional Ornstein-Uhlenbeck process

被引:12
作者
Baule, A. [1 ]
Friedrich, R.
机构
[1] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
D O I
10.1209/0295-5075/79/60004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the two-point correlation function < x((t)2) x(t(1))> for a subdiffusive continuous time random walk in a parabolic potential, generalizing well-known results for the single- time statistics to two times. A closed analytical expression is found for initial equilibrium, revealing non- stationarity and a clear deviation from a Mittag-Leffer decay. Our result thus provides a new criterion to assess whether a given stochastic process can be identified as a continuous time random walk. Copyright (C) EPLA, 2007.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Non-Poisson dichotomous noise: Higher-order correlation functions and aging [J].
Allegrini, P. ;
Grigolini, Paolo ;
Palatella, Luigi ;
West, Bruce J. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 2) :046118-1
[3]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[4]  
BARKAI E, 2007, ARXIV07052857V1
[5]   Multipoint fluorescence quenching-time statistics for single molecules with anomalous diffusion [J].
Barsegov, V ;
Mukamel, S .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (01) :15-24
[6]   Joint probability distributions for a class of non-Markovian processes [J].
Baule, A ;
Friedrich, R .
PHYSICAL REVIEW E, 2005, 71 (02)
[7]  
Bingol E., 1971, TURKIYE JEOLOJI KURU, V14, P1
[8]   LANGEVIN-EQUATIONS FOR CONTINUOUS-TIME LEVY FLIGHTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW E, 1994, 50 (02) :1657-1660
[9]   Aging correlation functions for blinking nanocrystals, and other on-off stochastic processes [J].
Margolin, G ;
Barkai, E .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (03) :1566-1577
[10]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77