(1, j)-set problem in graphs

被引:9
作者
Bishnu, Arijit [1 ]
Dutta, Kunal [2 ]
Ghosh, Arijit [1 ]
Paul, Subhabrata [1 ]
机构
[1] Indian Stat Inst, Adv Comp & Microelect Unit, Kolkata, India
[2] INRIA Sophia Antipolis Mediterranee, DataShape Grp, Valbonne, France
基金
欧洲研究理事会;
关键词
Domination; (1; j)-set; NP-completeness; Probabilistic method; Chordal graph; DOMINATION; SETS;
D O I
10.1016/j.disc.2016.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset D subset of V of a graph G = (V, E) is a (1, j)-set (Chellali et al., 2013) if every vertex v is an element of V\D is adjacent to at least 1 but not more than j vertices in D. The cardinality of a minimum (1, j)-set of G, denoted as gamma((1,j))(G), is called the (1, j)-domination number of G. In this paper, using probabilistic methods, we obtain an upper bound on gamma((1,j))(G) for j >= 0(log Delta), where Delta is the maximum degree of the graph. The proof of this upper bound yields a randomized linear time algorithm. We show that the associated decision problem is NP-complete for choral graphs but, answering a question of Chellali et al., providea linear-time algorithm for trees for a fixed j. Apart from this, we design a polynomial time algorithm for finding gamma((1,j))(G) for a fixed j in a split graph, and show that (1, j)-set problem is fixed parameter tractable in bounded genus graphs and bounded treewidth graphs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2515 / 2525
页数:11
相关论文
共 20 条
[1]  
Alon N., 2008, The Probabilistic Method
[2]  
Amin A.T., 1992, C NUMER, V91, P19
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[4]  
[Anonymous], 2006, SER OXFORD LECT SERI
[5]   DOMINATING SETS FOR SPLIT AND BIPARTITE GRAPHS [J].
BERTOSSI, AA .
INFORMATION PROCESSING LETTERS, 1984, 19 (01) :37-40
[6]   (Meta) Kernelization [J].
Bodlaender, Hans L. ;
Fomin, Fedor V. ;
Lokshtanov, Daniel ;
Penninkx, Eelko ;
Saurabh, Saket ;
Thilikos, Dimitrios M. .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :629-638
[7]   Fair domination in graphs [J].
Caro, Yair ;
Hansberg, Adriana ;
Henning, Michael .
DISCRETE MATHEMATICS, 2012, 312 (19) :2905-2914
[8]   [1,2]-sets in graphs [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. ;
McRae, Alice .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (18) :2885-2893
[9]   THE MONADIC 2ND-ORDER LOGIC OF GRAPHS .3. TREE-DECOMPOSITIONS, MINORS AND COMPLEXITY ISSUES [J].
COURCELLE, B .
RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1992, 26 (03) :257-286
[10]  
Dejter I.J., 2009, DISCUSS MATH GRAPH T, V29, P179, DOI [10.7151/dmgt.1439, DOI 10.7151/DMGT.1439]