Determinants of Hankel matrices

被引:22
作者
Basor, EL [1 ]
Chen, Y
Widom, H
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[3] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Hankel determinant; operator determinant; Laguerre kernel; Bessel kernel;
D O I
10.1006/jfan.2000.3672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose: of this paper is to compute asymptotically Hankel determinants for weights that are supported in a semi-infinite interval. The main idea is to reduce the problem to determinants of other operators whose determinants asymptotics are well known. (C) 2001 Academic Press.
引用
收藏
页码:214 / 234
页数:21
相关论文
共 12 条
[1]  
Barnes E., 1899, Q. J. Math, V31, P264
[2]   Distribution functions for random variables for ensembles of positive Hermitian matrices [J].
Basor, EL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (02) :327-350
[3]  
BASOR EL, UNPUB
[4]  
BASOR EL, IN PRSS MSRI BOOK SE
[5]  
Bottcher A., 1998, Introduction to Large Truncated Toeplitz Matrices
[6]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2
[7]  
Gohberg I.C., 1969, TRANSLATIONS MATH MO, V18
[8]   STRONG SZEGO LIMIT THEOREM FOR TOPELITZ DETERMINANTS [J].
HIRSCHMAN, II .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (03) :577-+
[9]  
Szego G., 1978, Orthogonal polynomials, Vvol. 23
[10]  
SZEGO G, 1982, HANKEL FORMS, V1, P111